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A WEIGHTED ZERO-SUM PROBLEM WITH

QUADRATIC RESIDUES

David J. Grynkiewicz — François Hennecart

ABSTRACT. Given a ring R and a subset A ⊆ R, the A-weighted Davenport

constant is the least integer DA(R) such that any sequence of terms from R of
length DA(R) has a nontrivial subsequence g1 · . . . · g`, where the gi ∈ R are the

terms of the subsequence, such that 0 = a1g1 + . . .+ a`g` for some ai ∈ A.

Let R = Z/nZ for an integer n ≥ 2, regarded as a ring, let Un be the set of
units in R, and let U2

n = {u2 : u ∈ Un} be the set of all squares of invertible

elements. It is proved that the weighted Davenport constant DU2
n

(Z/nZ) is equal

to 2Ω(n) + 1 when gcd(n, 10) = 1 or gcd(n, 6) = 1, extending a recent result of

Chintamani and Moriya [CM] and another of Adhikari, David and Jiménez Urroz
[ADJ]. Indeed, we show that DU2

n
(Z/nZ) = 2Ω(n) + min{v5(n), v3(n)} + 1 for

odd n with either v3(n) = 0 or v3(n) ≥ v5(n). As part of the proof, we show how

certain sequences of terms from an abelian group can be used to create a pairwise

balanced design with λ = 1.

Communicated by

Dedicated to the memory of Pierre Liardet

1. Introduction

Given a ring R and a subset A ⊆ R, the A-weighted Davenport constant is
the least integer DA(R) such that any sequence of terms from R of length DA(R)
has a nontrivial subsequence s1 · . . . · s`, where the si ∈ R are the terms of the
subsequence (we write sequences multiplicatively, following the notation of [Gr]
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[GH]), such that 0 = a1s1 + . . .+ a`s` for some ai ∈ A, i.e., such that

0 ∈
∑̀
i=1

Asi,

where Asi = {asi : a ∈ A}. We define EA(R) for R finite in a similar manner:
the only difference is that we require the subsequence s1 · . . . · s` to have length
exactly equal to ` = |R|. We refer to EA(R) as the weighted Gao constant.

By a result of [Gr, Chapter 16] [GMO] [YZ2] (extending the case when R =
Z/nZ [YZ1]), the two problems are in fact closely related: one has

EA(R) = DA(R) + |R| − 1. (1)

This property was conjectured by Thangadurai in [Th] and confirmed the expec-
tations of Adhikari et al. in [ADJ] and [AR], among others. It also extends the
corresponding well-known identity for the usual Davenport and Gao constants
due to Gao (see [Ga]). Indeed, it is from this now classical result of Gao that
the name Gao constant is derived, distinguishing it from the Erdős-Ginzburg-
Ziv constant, which is analogously defined but with exp(R) (the exponent of R
regarded as an abelian group) replacing |R| in the definition of EA(R). The two
names are sometimes interchanged and coincide when R = Z/nZ, which is the
main ring/group of interest in this paper.

When R = Z/nZ, we let Un ⊆ Z/nZ denote the set of invertible elements
modulo n. Then, letting A = U2

n = {u2 : u ∈ Un}, we have ` = DU2
n
(Z/nZ)

being the smallest integer such that, given any s1, . . . , s` ∈ Z, the equation

a2
1s1 + · · ·+ a2

`s` ≡ 0 mod n

always has an integer solution (a1, . . . , a`) ∈ Z` that is non-zero modulo n and
with either gcd(ai, n) = 1 or ai = 0 for each i. In [CM] it has been proved that
EU2

n
(Z/nZ) = 2Ω(n) + n (implying DU2

n
(Z/nZ) = 2Ω(n) + 1 by (1)) for any

integer n coprime to 30. The aim of this note is to extend this result (as well as
Theorem 2 of [ADJ]) to allow 5 | n or 3 | n.

Here, and in the rest of the paper, Ω(n) denotes the number of prime divisors
(allowing repetition) of n, while ω(n) denotes the number of distinct prime di-
visors of n. Also, vp(n) = d denotes the p-valuation of n, which is the maximal
integer d ≥ 0 such that pd | n. Our main result is the following, nearly char-
acterizing DU2

n
(Z/nZ) for odd n. Unfortunately, we were unable, in general, to

combine the trick used to handle the case when 5 | n with the delicate argument
used to handle 3 | n. Perhaps the lower bound from Theorem 1.1.3 is the correct
value in the remaining case when 0 < v3(n) < v5(n), as this would give a com-
mon generalization of parts 1 and 2 in Theorem 1.1 that agrees with the lower
bound from part 3.
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Theorem 1.1. Let n ≥ 1 be an odd integer.

1. If 3 - n, then DU2
n
(Z/nZ) = 2Ω(n) + 1.

2. If 5 - n, then DU2
n
(Z/nZ) = 2Ω(n) + 1.

3. In general,

2Ω(n) + 1 + min{v3(n), v5(n)} ≤ DU2
n
(Z/nZ) ≤ 2Ω(n) + 1 + v5(n).

Given an integer m ≥ 1, a sequence S = s1 · . . . · s` of terms from the ring R,
and a subset A ⊆ R with each a ∈ A viewed as the map x 7→ ax, we let

Σ∪≤m(A(S)) =
{ r∑
i=1

aisi : s1 · . . . · sr is a subsequence of S

of length 1 ≤ r ≤ m and ai ∈ A
}
,

Σ∪m(A(S)) =
{ m∑
i=1

aisi : s1 · . . . · sm is a subsequence of S

of length m and ai ∈ A
}
, and

σ(A(S)) =
∑̀
i=1

Asi = Σ∪|S|(A(S)) =
{∑̀
i=1

aisi : ai ∈ A
}
⊆ R.

The notation is a special case of more general concepts from [Gr]. With this
notation, DU2

n
(Z/nZ) (resp. EU2

n
(Z/nZ)) is the least integer ` such that 0 ∈

Σ∪≤`(U
2
n(S)) (resp. 0 ∈ Σn(U2

n(S))) for any sequence S of ` integers modulo n.

Since the lower bound onm required for Theorem 1.2 below always holds when
m = n, we will deduce the upper bounds in Theorem 1.1 from the following more
general result via (1).

Theorem 1.2. Let n ≥ 3 be an odd integer, let m be a positive integer and let
S be a sequence of terms from Z/nZ.

1. If 3 - n, m ≥ 3ω(n) + min{1, v5(n)}, and |S| ≥ m + 2Ω(n), then 0 ∈
Σ∪m(U2

n(S)).

2. If 3 | m, m ≥ 4Ω(n) +ω(n) + v5(n)−2, and |S| ≥ m+ 2Ω(n) + v5(n), then
0 ∈ Σ∪m(U2

n(S)).

We notice that the main result in [CM], which is generalized by our results
here, follows from Kneser’s Theorem [Gr, Chapter 6] and it’s special instances,
the Cauchy-Davenport and Chowla Theorems. We obtain these improvements,
in part, by use of explicit addition theorems derived using the discrete circle
method. These explicit results are then combined with a combinatorial argument
and some design theory to yield the final proof.
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2. Notation

In this section, we present the basic notation for sequences and subsequence
sums, found in the texts [Gr] [GH], that will be used in the remainder of the
paper. This is done for the benefit of the reader less familiar with this notation.

All intervals will be discrete. Thus, given real numbers a and b, we let

[a, b] = {x ∈ Z : a ≤ x ≤ b}.

Following the tradition in combinatorial number theory, sequences of terms from
a set X are always unordered and finite in length, and we write them using
multiplicative notation. The term multi-set would also be appropriate but is not
used in the field. To make this formal, we use monoid theoretic notation arising
from factorization theory. This means that a sequence S is written in the form

S = g1 · . . . · g` (2)

with the gi ∈ X the terms of X. Repetition of terms is allowed, and, as our
sequences are unordered, we have S = gτ(1) · . . . · gτ(`) for any permutation τ
of [1, `]. Formally, we view S as an element of the free abelian monoid F(X)
with basis X and monoid operation denoted by · (chosen to distinguish the
monoid operation of sequence concatenation from ordinary ring or group theo-
retic multiplication). Of course, whenever we index the terms of S as in (2), we
are implicitly ordering the terms of S. Normally this ordering is irrelevant, but
sometimes it can be useful. If we have a fixed indexing/ordering of the terms of
S as in (2), then we let

S(I) = •
i∈I
gi

denote the subsequence of S consisting of those terms gi with i ∈ I. As a matter
of abbreviation, for n ≥ 0, we let

g[n] = g · . . . · g︸ ︷︷ ︸
n

∈ F(X)

denote a sequence consisting of the term g repeated n times. Likewise, if T ∈
F(X) is a sequence, then T [n] = T · . . . · T︸ ︷︷ ︸

n

denotes the sequence consisting of

the subsequence T repeated n times. In both cases, the bracket in the expo-
nent is sometimes dropped when it leads to no confusion with other forms of
multiplication.

Standard notation for monoids can be used to describe all the main properties
of a sequence. In particular, for S given by (2),

|S| = ` is the length of the sequence S,
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vg(S) = {i ∈ [1, `] : gi = g} is the multiplicity of the term g in S,

h(S) = max{vg(S) : g ∈ X} is the maximum multiplicity of a term of S, and

supp(S) = {g ∈ X : vg(S) > 0} is the support of S.

The support is the set of all elements that occur as terms of S, i.e., g ∈ supp(S) if
the sequence S contains the term g. Also, T | S indicates that T is a subsequence
of S, meaning vg(T ) ≤ vg(S) for all g ∈ X. The multiplicities vg(S), for g ∈
X, completely characterize the sequence S, and an alternative way to write S,
without involving an implicit ordering, is as

S = •
g∈X

g[vg(S)].

When T | S is a subsequence of S, we use T [−1] · S or S · T [−1] to denote
the subsequence of S obtained by removing the terms belonging to T , meaning
vg(T

[−1] · S) = vg(S) − vg(T ) for all g ∈ X. Also, S · T [−x] = S · (T [x])[−1]

when T [x] | S. Again, the brackets are sometimes dropped when this leads to no
confusion.

Whenever addition is well-defined between the terms of S given by (2), we let

σ(S) = g1 + . . .+ g`

denote the sum of the terms of S. If ϕ : X → Y is a map, then ϕ(S) =
ϕ(g1) · . . . · ϕ(g`) ∈ F(Y ) is the sequence over Y obtained by applying the map
ϕ to each term of S. Note that |ϕ(S)| = |S| always holds, regardless of the
injectivity of ϕ.

3. Basic Setup

If G is a group and H ≤ G is a subgroup, then φH : G → G/H denotes the
natural homomorphism. When G = Z/nZ is cyclic and regarded as a ring, then
all subgroups H ≤ G are also ideals, and the map φH is a ring homomorphism.
By the Chinese Remainder Theorem, there is a ring isomorphism

Z/nZ ∼= (Z/pn1
1 Z)× . . .× (Z/pnrr Z)

x 7→ (x mod pn1
1 , . . . , x mod pnrr ),

where p1, . . . , pr are the distinct prime divisors of n = pn1
1 · . . . · pnrr . It will be

more convenient to work with the isomorphic ring G = (Z/pn1
1 Z)×. . .×(Z/pnrr Z)

rather than Z/nZ. When doing so, we have

U2
G = U2

p
n1
1
× . . .× U2

pnrr
,
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where UG denotes the units in the ring G. A sequence S of terms from Z/nZ
is then a U2

n-weighted zero-sum precisely when the sequence of i-th coordinates
forms a U2

p
ni
i

-weighted zero-sum for each i ∈ [1, r].

Let G be a ring isomorphic to Z/nZ and let H ≤ G be a subgroup. Then
H = dG for some d | n. Indeed, if eG ∈ G is the identity of G, then H is generated
(as a group) by eH := deG. Moreover, H is a ring (though not a subring of G
as it has no identity) if we redefine multiplication by setting xeH · yeH = xyeH ,
where xeH , yeH ∈ H are arbitrary elements with x, y ∈ Z. One easily checks
that this is well-defined and indeed makes H into a ring. Note we have used · to
denote multiplication in the ring H, to distinguish it from multiplication in the
ring R inherited to the ideal H. The two are clearly different in general. Let ψd :
G → dG = H denote the multiplication by d map, so ψd(xeG) = xdeG = xeH ,
and let · : H → Z/ndZ denote the map given by xeH = x + n

dZ, where x ∈ Z.
It is easily checked that both ψd and · are ring homomorphisms, with the latter
an isomorphism. Thus their composition map

ψd : G→ Z/
n

d
Z

is also a ring homomorphism given by ψd(xeG) = ψd(xeG) = x + n
dZ, where

x ∈ Z. From the above definitions, we have the following useful property:

gh = ψd(g) · h for any g ∈ G and h ∈ H, (3)

where multiplication in the left hand side is in the ring R and multiplication in
the right hand side is in the ring H.

Let G ∼= Z/nZ and let ϕ : G → G′ be a surjective ring homomorphism.
Then kerϕ = H ≤ G is a subgroup, thus cyclic. Then H = dG ∼= Z/ndZ and
G′ ∼= Z/dZ for some divisor d | n. Let UG ⊆ G and UG′ ⊆ G′ denote the units
in the respective rings G and G′. Then we have

ϕ(UG) = UG′ . (4)

Indeed, recalling the short argument here, we see that, by composing the homo-
morphisms Z/nZ ∼= G → G′ ∼= Z/dZ, it suffices to prove (4) when G = Z/nZ
and G′ = Z/dZ with ϕ given by x + nZ 7→ x + dZ. Now UG = Un = {x + nZ :
x ∈ Z, gcd(x, n) = 1} and UG′ = Ud = {x + dZ : gcd(x, d) = 1}. Thus
clearly ϕ(UG) ⊆ UG′ . On the other hand, if x ∈ Z with gcd(x, d) = 1, then
y = x+ p1 · · · ptd ∈ Z, where p1, . . . , pt are the distinct prime divisors of n that
do not divide lcm(x, d), has ϕ(y + nZ) = x + dZ ∈ Ud with gcd(y, n) = 1 (the
latter is easily seen by noting gcd(y, p) = 1 for any prime p | n, distinguishing
three disjoint cases depending on whether p | x, p | d or p - lcm(x, d)), which
shows that UG′ = Ud ⊆ ϕ(Un) = ϕ(UG).
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As one easy consequence of (4), we have

φH

(
σ(U2

G(S))
)

= σ
(
φH(UG)2(φH(S))

)
= σ

(
U2
G/H(φH(S))

)
, (5)

which allows us to argue inductively using factor rings G/H. In particular,
DU2

G/H
(G/H) is the minimal integer ` such that any sequence S ∈ F(G) with

|S| ≥ ` has a nontrivial subsequence T | S with H ∩ σ(U2
G(T )) 6= ∅. As a second

consequence, we have the following lemma, which allows us to apply Theorem
1.1 inductively to a subsequence whose terms are all from a proper subgroup
H ≤ G ∼= Z/nZ, even though H is not a subring of G.

Lemma 3.1. Let G be a ring isomorphic to Z/nZ, let H ≤ G be an additive
subgroup of order n

d , and let S ∈ F(H) be a sequence of terms from H. Then

σ(U2
G(S)) = σ(U2

n/d(S)),

where H ∼= H = Z/ndZ is the ring isomorphism described above. In particular, a

sequence S ∈ F(H) is a U2
G-weighted zero-sum in G if and only if S ∈ F(Z/ndZ)

is a U2
n/d-weighted zero-sum in Z/ndZ.

P r o o f. Let S = s1 · . . . · s` with si ∈ H and let

g = u2
1s1 + . . .+ u2

`s` ∈ σ(U2
G(S))

be an arbitrary element, where ui ∈ UG. By (3), we have

g = ψd(u
2
1) · s1 + . . .+ ψd(u

2
`) · s`,

so that applying the ring isomorphism · yields

g = ψd(u
2
1) s1 + . . .+ ψd(u

2
`) s` ∈ σ(U2

n/d(S))

where the inclusion follows from ψd(U
2
G) = ψd(UG)2 = U2

n/d (attained by apply-

ing (4) to the ring homomorphism ψd). Thus σ(U2
G(S)) ⊆ σ(U2

n/d(S)).

On the other hand, if g′ = v2
1 s1 + . . . + v2

` s` ∈ σ(U2
n/d(S)) is an arbitrary

element, where vi ∈ Un/d = ψd(UG), then each vi = ψd(ui) = ψd(ui) for some

ui ∈ UG, in which case g = u2
1s1 + . . . + u2

`s` ∈ σ(U2
G(S)) has g = g′ by the

argument above, showing the reverse inclusion. �

The primes 3 and 5 need to be treated with extra care. If G = Z/nZ with
n = 3n3 , then

U2
3n3 = 1 + 3G.

If n = 5n5 , then
U2

5n5 = {1,−1}+ 5G.

We also recall that −1 ∈ U2
p , for an odd prime p, precisely when p ≡ 1 mod 4.
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Let G be an abelian group and let S ∈ F(G) be a sequence of terms from G.
If H ⊆ G is a subset, then we let SH | S denote the subsequence consisting of
all terms from H. Thus S = SH · SG\H .

If S = s1·. . .·s` ∈ F(G) withG ∼= Z/nZ, then we generally have Σm(U2
G(S)) 6=

Σm(U2
G(S+g)), where g ∈ G and S+g ∈ F(G) denotes the translated sequence

(s1 + g) · . . . · (s` + g) ∈ F(G). Moreover, 0 ∈ Σm(U2
G(S + g)) need not imply

0 ∈ Σm(U2
G(S)). As is often the case, the lack of translational invariance makes

dealing with Σm(U2
G(S)) more complicated. However, the following lemma gives

one case when we are allowed to translate the terms of S.

Lemma 3.2. Let n and m be positive integers, let G ∼= Z/nZ, let x ∈ G be an
element with ord(x) = 3α, where α ≥ 0, let S = s1 · . . . · s` ∈ F(G) be a sequence
of terms from G, and let M = |{i ∈ [1, `] : v3(ord(si)) ≥ α}| denote the number
of terms si of S with v3(ord(si)) ≥ α. Suppose M ≥ |S|−m+1 and 3 | m. Then

0 ∈ Σm(U2
G(S + x)) implies 0 ∈ Σm(U2

G(S)),

where S + x = (s1 + x) · . . . · (s` + x) ∈ F(G).

P r o o f. If 3 - n, then x = 0 in view of ord(x) = 3α, in which case the lemma is
trivial. Therefore we may assume 3 | n. Let

G = G3 ×Gp1 × . . .×Gpr ∼= Z/nZ,

where p1, . . . , pr are the distinct prime divisors of n that are greater than 3,

G3 = Z/3n3Z, and each Gpi = Z/qiZ with qi = p
vpi (n)

i for i = 1, . . . , r. By
hypothesis, there exists a subsequence s1 · . . . · sm | S and

ui ∈ UG = U3n3 × Uq1 × . . .× Uqr ,
for i = 1, . . . ,m, such that

0 = u2
1(s1 + x) + . . .+ u2

m(sm + x). (6)

Since ord(x) = 3α, we have x ∈ G3, in which case we see that it suffices to show
that

0 ∈ σ
(
U2

3n3 (π(S))
)
,

where π : G→ G3 = Z/3n3Z is the projection map onto the first coordinate. To
this end, we may w.l.o.g. assume G = G3 = Z/3n3Z, in which case U2

G = 1 + 3G
and it remains to show

0 ∈ σ(U2
G(S)). (7)

Since U2
G = 1 + 3G, each u2

i = 1 + 3vi with vi ∈ G, for i = 1, . . . ,m, and now
(6) yields

0 = (1 + 3v1)(s1 + x) + . . .+ (1 + 3vm)(sm + x)
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= σ(S) + 3

m∑
i=1

sivi +
(
m+ 3

m∑
i=1

vi

)
x. (8)

We may w.l.o.g. assume ord(s1) = max{ord(si) : i ∈ [1,m]} = 3β , in which case

〈s1, . . . , sm〉 = 3n3−βG (9)

with s1 ∈ 3n3−βG \ 3n3−β+1G. By hypothesis, M ≥ |S| − m + 1, so that the
pigeonhole principle ensures that ord(si) ≥ 3α for some i ∈ [1,m]. Thus β ≥ α,
so that

x ∈ 3n3−αG ≤ 3n3−βG. (10)

Consequently, we see that (8), combined with (9), (10) and the hypothesis 3 | m,
yields

σ(S) = −3

m∑
i=1

sivi −
(
m+ 3

m∑
i=1

vi

)
x ∈ 3n3−β+1G. (11)

Since U2
G = 1 + 3G, it follows (in view of the definition of β and s1) that

σ(U2
G(S)) =

m∑
i=1

(1 + 3G)si = σ(S) + 3s1G = σ(S) + 3n3−β+1G

is a 3n3−β+1G-coset, which combined with equation (11) implies 0 ∈ 3n3−β+1G =
σ(U2

G(S)), yielding (7) and completing the proof. �

Finally, we recall the following classical result from design theory [Kr, Section
12.1.6].

Theorem 3.3. Let H be a hypergraph on v vertices such that any two vertices
of H are contained in a unique edge of H (i.e., H is a pairwise balanced design
with λ = 1). Let K ′ ⊆ N be a subset that contains all numbers that occur as a
size of an edge of H, and let β(K ′) = gcd{k(k − 1) : k ∈ K ′}. Then

v(v − 1) ≡ 0 mod β(K ′).

4. Representation Lemmas

In this section, we use the method of exponential or character sums to give
precise information about which elements can be represented as a U2

n-weighted
sum for n = pα an odd prime power. To this end, if S = s1 · . . . · s` is a sequence
of integers, t ∈ Z and q = pα is an odd prime power, then we let Nq(t;S) to be

p−α(|S|−1)+|S|∣∣{(a1, . . . , a`) ∈ Un × . . .× Un : a2
1s1 + . . .+ a2

`s` ≡ −t mod q}
∣∣
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and denote an appropriately scaled multiple of the number of representations
modulo q in σ(U2

G(S)) of −t. Thus Nq(t;S) > 0 precisely when −t ∈ σ(U2
q (S))

modulo q.

The following lemmas will show that many elements of Z/qZ can be repre-
sented as U2

n-weighted subsequence sums of very short sequences S ∈ F(Z/qZ)
(of length 2, 3 or 4) provided the terms of S are units, i.e., generating elements
for Z/qZ. They also give precise information about how many representations as
a U2

n-weighted subsequence sum each −t ∈ Z/qZ has in terms of the quadratic
character χp : Uq → {−1, 1}, which is the multiplicative group homomorphism
that takes an element x from the multiplicative group Uq of units in Z/qZ and
assigns the value 1 or −1 to x according to whether x is a square or not. Thus,
for x ∈ Z with gcd(x, p) = 1, we have χp(x) = 1 if x ≡ y2 mod p for some
y ∈ Z, and χp(x) = −1 otherwise.

Lemma 4.1. Let q = pα be an odd prime power, let t ∈ Z be an integer, let
x, y, z ∈ Uq be units in Z/qZ, and let χ = χp be the quadratic character modulo
p.

1. For gcd(p, t) = 1, we have

Nq(t;x · y · z) = (p− 1)3 + χ(txyz)p2

+ (−1)(p−1)/2(χ(xy) + χ(yz) + χ(zx) + χ(tx) + χ(ty) + χ(tz))p+ 1.

2. For p | t, we have

Nq(t;x · y · z) = (p− 1)3− (−1)(p−1)/2(χ(xy) +χ(yz) +χ(zx))(p− 1)p− (p− 1).

P r o o f. We set e(x) = exp(2πix), where i =
√
−1 here. We will use the following

Gauss sums:

G(h, d) =

d∑
u=1

e

(
hu2

d

)
and G∗(h, d) =

d∑
u=1

gcd(u,d)=1

e

(
hu2

d

)
.

Firstly, for β ≥ 2 and p - h, one has

G∗(h, pβ) =

pβ∑
u=1
p-u

e

(
hu2

pβ

)
= G(h, pβ)−

pβ−1∑
u=1

e

(
hu2

pβ−2

)

= G(h, pβ)−
pβ−2∑
v=1

p−1∑
w=0

e

(
hv2

pβ−2

)
= G(h, pβ)− pG(h, pβ−2),

9
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where we have considered the change of variables u = v+ pβ−2w. Secondly, still
assuming β ≥ 2 and using the change of variables u = v+pβ−1w ∈ [1, pβ ], where
w ∈ [0, p− 1] and v ∈ [1, pβ−1], for the first equality below, we have

G(h, pβ) =

pβ−1∑
v=1

e

(
hv2

pβ

) p−1∑
w=0

e

(
2hvw

p

)
= p

pβ−1∑
v=1
p|v

e

(
hv2

pβ

)
= p

pβ−2∑
v=1

e

(
hv2

pβ−2

)

= pG(h, pβ−2),

where the second equality follows from the fact that sum of all p-th roots of unity
is zero (along with the hypotheses p odd and gcd(p, h) = 1); see [Gr, Chapter 1]
or [Na, Chapter 2.7]. Hence

G∗(h, pβ) = 0 for β ≥ 2 and p - h. (12)

Using the exponential sums G∗(h, pβ) (see [Na, Chapter 2.7] or [Gr, Proposi-
tion 19.1] for the first equality), we may express Nq(t;x · y · z) as

Nq(t;x · y · z) =
1

p3α−3

pα∑
h=1

G∗(hx, pα)G∗(hy, pα)G∗(hz, pα)e
( ht
pα

)

=(p− 1)3+
1

p3α−3

α∑
β=1

pβ∑
h=1
p-h

G∗(hxpα−β, pα)G∗(hypα−β, pα)G∗(hzpα−β, pα)e
(ht
pβ

)

= (p− 1)3 +
1

p3α−3

α∑
β=1

p3(α−β)

pβ∑
h=1
p-h

G∗(hx, pβ)G∗(hy, pβ)G∗(hz, pβ)e
(ht
pβ

)
,

which gives, by (12),

Nq(t;x · y · z) = (p− 1)3 +

p−1∑
h=1

G∗(hx, p)G∗(hy, p)G∗(hz, p)e

(
ht

p

)

= (p− 1)3 +

p−1∑
h=1

(
G(hx, p)− 1

)(
G(hy, p)− 1

)(
G(hz, p)− 1

)
e

(
ht

p

)
.

10
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We know that G(h, p), for p - h, can be related to the usual Gauss sums τ(χ) =
p−1∑
a=1

χ(a)e(a/p):

G(h, p) =

p−1∑
a=1

χ(a)e

(
ha

p

)
=

p−1∑
b=1

χ(b)χ(h)e

(
b

p

)
= χ(h)τ(χ) = χ(h)τ(χ),

where the · used above refers to complex conjugation, so that χ(h) = χ(h) =
χ(h)−1 = χ(h−1), and where the second equality follows by using the substitu-
tion b = ah. We now use the classical identity τ(χ) =

√
p or i

√
p according to

p ≡ 1 mod 4 or p ≡ 3 mod 4 (cf. [Ay, Theorem 4.15, p. 315]). We let E be the
error term E = Nq(t;x · y · z)− (p− 1)3. Hence, for p ≡ 1 mod 4,

E =

p−1∑
h=1

(χ(hx)
√
p− 1)(χ(hy)

√
p− 1)(χ(hz)

√
p− 1)e

(
ht

p

)

=
(
p3/2χ(xyz) +

√
p(χ(x) + χ(y) + χ(z))

) p−1∑
h=1

χ(h)e

(
ht

p

)

−
(
p(χ(xy) + χ(yz) + χ(zx)) + 1

) p−1∑
h=1

e

(
ht

p

)
.

If p - t, then
∑p−1
h=1 χ(h)e

(
ht
p

)
= χ(t)

√
p and

∑p−1
h=1 e

(
ht
p

)
= −1, whence

E = p2χ(xyzt) + p
(
χ(xt) + χ(yt) + χ(zt) + χ(xy) + χ(yz) + χ(zx)

)
+ 1.

If p | t, then
∑p−1
h=1 χ(h)e

(
ht
p

)
= 0 and

∑p−1
h=1 e

(
ht
p

)
= p− 1, whence

E = −p(p− 1)
(
χ(xy) + χ(yz) + χ(zx)

)
− (p− 1).

We argue similarly when p ≡ 3 mod 4. �

Consequently, if p | t, then Nq(t;x·y ·z) > 0 when p > 2+(−1)(p−1)/2(χ(xy)+
χ(yz) + χ(zx)), which is always the case for p > 5. If p - t, then we could
observe that Nq(t;x · y · z) = (p − 1)3 − p2 + 1 if txyz is not a square modulo
p, and Nq(t;x · y · z) ≥ (p − 1)3 + p2 − 6p + 1 if txyz is a square modulo p.
Hence Nq(t;x · y · z) > 0 if p ≥ 5. Applying this to p = 5, one gets U5α ⊆
U2

5α(x) + U2
5α(y) + U2

5α(z). Since U2
5α = {1, 4} + 5(Z/5αZ), we deduce, when

5 - xyzu, that

U2
5α(x)+U2

5α(y) + U2
5α(z) + U2

5α(u)

= {1, 2, 3, 4}+ 5(Z/5αZ) + {u, 4u}+ 5(Z/5αZ) = Z/5αZ. (13)

11
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This property has been obtained in [CM] by using Kneser’s Theorem.

For p = 5, our results are still unsatisfactory when 5 | t. Hence we need an
additional result.

Lemma 4.2. Let q = pα be an odd prime power, let t ∈ Z be an integer, let
x, y ∈ Uq be units in Z/qZ, and let χ = χp be the quadratic character modulo p.

1. For p - t, we have

Nq(t;x · y) = (p− 1)2 − (−1)(p−1)/2(χ(xy) + χ(tx) + χ(ty))p− 1.

2. For p | t, we have

Nq(t;x · y) = ((−1)(p−1)/2χ(xy) + 1)p(p− 1).

P r o o f. We argue as in the preceding lemma and consider only the case p ≡
1 mod 4. We write Nq(t;x · y) = (p− 1)2 + E, where

E =

p−1∑
h=1

(χ(hx)
√
p− 1)(χ(hy)

√
p− 1)e

(
ht

p

)

= (pχ(xy) + 1)

p−1∑
h=1

e

(
ht

p

)
−√p(χ(x) + χ(y))

p−1∑
h=1

χ(h)e

(
ht

p

)
,

and the result follows by distinguishing the cases p | t and p - t. �

We deduce from it that, if t is a multiple of p ≡ 1 mod 4, and if xy is square
modulo p, then t ∈ U2

pα(x) + U2
pα(y). Moreover, for each such p > 5, every

invertible residue class modulo pα is in U2
pα(x) + U2

pα(y).

We now summarize the key points of the previous lemmas.

Lemma 4.3. Let q = pα be an odd prime power, let G = Z/qZ, and let S ∈
F(Uq) be a nontrivial sequence of units from G.

1. If p ≥ 7 and |S| ≥ 3, then σ(U2
q (S)) = G.

2. If p = 5 and |S| ≥ 4, then σ(U2
q (S)) = G.

3. If p = 5 and |S| = 3, then Uq ⊆ σ(U2
q (S)) and either σ(U2

q (S)) = G or the
three terms of S are quadratically equivalent modulo 5 (so χ5(x) = χ5(y) =
χ5(z), where S = x · y · z). In the later case, we have 5G ⊆ σ(U2

q (T )) for
any length two subsequence T | S.

4. If p = 3 and σ(S) ∈ 3G, then σ(U2
q (S)) = 3G.

P r o o f. Part 1 follows by Lemma 4.1 as explained after its proof. Part 2 follows
as noted in (13). Part 3 follows from Lemmas 4.1 and 4.2. For Part 4, we have only
to recall that U2

3α = 1+3G, so that σ(U2
q (S)) is a 3G-coset. More precisely, letting

12
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S = s1 · . . . · s` with each si ∈ Uq a unit, we have U2
q (si) = si + 3siG = si + 3G

for each i ∈ [1, `] (since the map x 7→ six is an isomorphism of G). Thus

σ(U2
q (S)) =

∑̀
i=1

U2
q (si) =

∑̀
i=1

(si + 3G) = σ(S) + 3G = 3G, with the final equality

in view of the hypothesis σ(S) ∈ 3G. �

5. Stable Sequences and Pairwise Balanced Designs

For the proof of our main results, we will utilize an inductive structure that
works in greater generality and which has nothing inherit to do with weighted
subsequence sums. We present the ideas here.

Let G be a finite abelian group and let SG be the set of subgroups of G. Let

f : SG → Z+

be a function that assigns a positive integer to each subgroup of G. We say that
f is admissible provided

A1. f(H1) ≤ f(H2) for any subgroups H1 ≤ H2 ≤ G, and

A2. f(H1 +H2) ≤ f(H1)+f(H2)−f(H1∩H2) for any subgroups H1, H2 ≤ G.

If the inequality in A1 is always strict when H1 < H2, then we say that f
is strictly admissible. Given a finite abelian group G, an admissible function
f : SG → Z+, a sequence S ∈ F(G), and a subgroup H ≤ G, we say that H is
f -stable in S provided

S1. 〈supp(SH)〉 = H, and

S2. |SH\H′ | ≥ f(H)− f(H ′) + 1 for all proper subgroups H ′ < H.

We say that the sequence S is f -stable provided 〈supp(S)〉 is f -stable in S. Note
that SH is f -stable when H is f -stable in S.

Finally, if f is admissible for G and K ≤ G is a subgroup, then we can define
another function fK : SG → Z+ by setting fK(H) = f(K+H). If H1 ≤ H2 ≤ G,
then K +H1 ≤ K +H2 ≤ G, so A1 holding for f ensures that A1 holds for fK .
We also have

fK(H1 +H2) = f(K +H1 +K +H2)

≤ f(K +H1) + f(K +H2)− f((K +H1) ∩ (K +H2))

≤ f(K +H1) + f(K +H2)− f(K + (H1 ∩H2))

= fK(H1) + fK(H2)− fK(H1 ∩H2),

13
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where the first inequality follows from A2 for f , and the second from A1 for f
along with the inequality K + (H1 ∩H2) ≤ (K + H1) ∩ (K + H2). This shows
that fK is admissible for G. Also, observe that fK = f when K is trivial.

The basic idea is as follows. Suppose one has a combinatorial invariant for
certain finite abelian groups, like a weighted Davenport constant, that represents
the minimal length so that all sequences of this length possess a desired property,
e.g., contain a weighted zero-sum subsequence. If one wishes to show that the
function f is an upper bound for this combinatorial invariant and is proceeding
inductively, then the general procedure is to take a sequence S ∈ F(G) of length
|S| = f(G) with 〈supp(S)〉 = G and assume S2 holds, else the theorem follows
by applying an induction hypothesis to some subsequence SH ∈ F(H) having
|SH | = |S| − |SG\H | = f(G) − |SG\H | ≥ f(H). Of course, one may not be able
to effectively use the inductive hypothesis on certain subgroups H ≤ G, so it
may be necessary to modify the function f to exclude these groups, hence the
definition of fK . This will be our general strategy for bounding DU2

n
(Z/nZ) in

the next section. We now proceed with showing that there is always a certain
underlying structure inherent when dealing with this general setup. Indeed, this
structure will eventually allow us to define a pairwise balanced design with λ = 1
at the end of the section.

Lemma 5.1. Let G be a finite abelian group G, let f : SG → Z+ be an admissible
function, and let S ∈ F(G) be sequence of terms from G. Then there exists a
minimal subgroup H ≤ G such that

|SG\H | ≤ f(G)− f(H).

Moreover, if |S| ≥ f(G)− f(H) + 1, then H = 〈supp(SH)〉 is f -stable in S.

P r o o f. Let G0 = 〈supp(S)〉. Then |SG\G0
| = 0 ≤ f(G)− f(G0) in view of A1.

Thus, since G is finite, there must exists a minimal subgroup H ≤ G such that

|SG\H | ≤ f(G)− f(H).

If we also have |S| ≥ f(G) − f(H) + 1, then SH will be nontrivial. Thus, in
view of A1, we must have 〈supp(SH)〉 = H, else the subgroup 〈supp(SH)〉 would
contradict the minimality of H. If S2 holds, then H is stable, as desired. Other-
wise, there exists a proper subgroup H ′ < H such that |SH\H′ | ≤ f(H)−f(H ′).
However, in this case, we have

|SG\H′ | = |SG\H |+ |SH\H′ | ≤ f(G)− f(H) + f(H)− f(H ′) = f(G)− f(H ′),

so that H ′ contradicts the minimality of H. �

Lemma 5.2. Let G be a finite abelian group G and let f : SG → Z+ be an
admissible function such that f(H2) ≥ f(H1) + ε whenever H1 < H2 ≤ G,

14
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where ε ∈ Z+. Let S ∈ F(G) be sequence of terms from G that is f -stable with
〈supp(S)〉 = G, and let K ≤ G be a subgroup.

If H ≤ G is a subgroup with |SG\H | ≤ fK(G)− fK(H) + ε, then K ≤ H.

P r o o f. Assume by contradiction that H < H + K ≤ G. Then f(H + K) ≥
f(H) + ε by hypothesis, so that our other hypotheses give

|SG\H | ≤ fK(G)− fK(H) + ε = f(G)− f(K +H) + ε ≤ f(G)− f(H).

However, since 〈supp(S)〉 = G by hypothesis, this contradicts that S is f -stable.
�

Lemma 5.3. Let G be a finite abelian group G, let f : SG → Z+ be a strictly
admissible function, let S ∈ F(G) be sequence of terms from G that is f -stable
with 〈supp(S)〉 = G, and let K ≤ G be a subgroup.

Suppose T | S is a subsequence such that |T | ≤ fK(G) − fK(H) + 1, where
H = 〈supp(S · T [−1])〉. Then K ≤ H. Moreover, if H < G is proper, then
S · T [−1] = SH .

P r o o f. By hypothesis, we have

|SG\H | ≤ |T | ≤ fK(G)− fK(H) + 1.

As as result, since f is strictly admissible, Lemma 5.2 yields K ≤ H. Now assume
H < G is proper.

If |SG\H | ≤ fK(G) − fK(H) = f(G) − f(K + H) = f(G) − f(H), where
the latter equality follows in view of K ≤ H, then this would contradict that S
is f -stable with 〈supp(S)〉 = G. Therefore we may assume |SG\H | ≥ fK(G) −
fK(H) + 1, which forces equality to hold in our earlier estimate:

|SG\H | = |T | = fK(G)− fK(H) + 1.

Since H = 〈supp(S ·T [−1])〉, the only terms of S that can be from G\H are those
from T . Consequently, the equality |SG\H | = |T | is equivalent to S ·T [−1] = SH ,
as desired. �

Lemma 5.4. Let G be a finite abelian group G, let f : SG → Z+ be an admissible
function such that f(H2) ≥ f(H1) + ε whenever H1 < H2 ≤ G, where ε ∈ Z+,
let S = s1 · . . . · s` ∈ F(G) be sequence of terms from G that is f -stable with
|S| = f(G) and 〈supp(S)〉 = G, and let K ≤ G be a subgroup with f(K) ≥ ε+1.

Suppose T = S(I) | S is a subsequence with |T | ≤ fK(G) − fK(H) + ε and
supp(S · T [−1]) ⊆ H ≤ G, where I ⊆ [1, `]. Then there exists a subsequence
U = S(J) | S such that

1. I ⊆ J , so T | U ,

15
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2. K ≤ L ≤ H, where L = 〈supp(S · U [−1])〉,
3. |U | ≤ fK(G)− fK(L) + ε, and

4. S · U [−1] is fK-stable.

P r o o f. Since f(H2) ≥ f(H1) + ε whenever H1 < H2 ≤ G, and since |SG\H | ≤
|T | (in view of supp(S · T [−1]) ⊆ H), Lemma 5.2 implies that K ≤ H. Let
S′ = S · T [−1] ∈ F(H) and apply Lemma 5.1 to the sequence S′ ∈ F(H)
using the admissible function fK . Let L ≤ H be the resulting subgroup and let
U = S′H\L · T , so that

S′L = S′ · S′[−1]
H\L = S · T [−1] · S′[−1]

H\L = S · U [−1]. (14)

Then Lemma 5.1 and our hypothesis |T | ≤ fK(G)− fK(H) + ε yield

|SG\L| ≤ |U | = |S′H\L|+ |T | ≤ fK(H)− fK(L) + (fK(G)− fK(H) + ε)

= fK(G)− fK(L) + ε.

Consequently, since f(H2) ≥ f(H1) + ε whenever H1 < H2 ≤ G, Lemma 5.2
implies that K ≤ L, whence

|S′| = |S| − |T | ≥ fK(H)− ε ≥ fK(H)− fK(K) + 1 ≥ fK(H)− fK(L) + 1,

where the first inequality follows in view of the hypotheses |S| = f(G) = fK(G)
and |T | ≤ fK(G)−fK(H)+ ε, the second from the hypothesis fK(K) = f(K) ≥
ε+ 1, and the third in view of K ≤ L and A1. Thus Lemma 5.1 further implies
that L is fK-stable in S′, implying that S′L = S ·U [−1] (see (14)) is an fK-stable

sequence and that L = 〈supp(S′L)〉 = 〈supp(S · U [−1])〉. Letting T = S(I) and
U = S(J), with I, J ⊆ [1, `], we clearly have I ⊆ J in view of the definition of
U , and all parts of the lemma have now been established. �

Lemma 5.5. Let G be a finite abelian group G, let f : SG → Z+ be a strictly
admissible function, let S = s1 · . . . · s` ∈ F(G) be sequence of terms from G that
is f -stable with |S| = f(G) and 〈supp(S)〉 = G, and let K ≤ G be a subgroup
with f(K) ≥ 2.

Suppose T1 = S(I1) | S and T2 = S(I2) | S, where I1, I2 ⊆ [1, `], are subse-
quences such that, for i = 1, 2,

(a) S · T [−1]
i is fK-stable and

(b) |Ti| ≤ fK(G)− fK(Hi) + 1, where Hi = 〈supp(S · T [−1]
i )〉.

If I1 ∩ I2 6= ∅, then there exists a subsequence T = S(I) | S, where I ⊆ [1, `],
such that

(i) S · T [−1] is fK-stable,
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(ii) |T | ≤ fK(G)− fK(H) + 1, where H = 〈supp(S · T [−1])〉,
(iii) I1 ∪ I2 ⊆ I and H ≤ H1 ∩H2.

P r o o f. If H1 = G, then (b) implies |T1| ≤ 1. Hence, since I1 ∩ I2 6= ∅, this
forces I1 ⊆ I2, so that the theorem holds with I = I2, T = T2 and H = H2.
Therefore we may assume H1 < G is proper. Likewise, we may assume H2 < G
is proper. Consequently, Lemma 5.3 implies that

K ≤ H1 ∩H2 and SHi = S · T [−1]
i for i = 1, 2. (15)

Let I ′ = I1 ∪ I2 and let T ′ = S(I ′) | S. Since supp(S · T [−1]
i ) ⊆ Hi, we have

supp(S · T ′[−1]
) ⊆ H1 ∩H2. Indeed, SH1∩H2

= S · T ′[−1]
.

If

|T ′| = |I1 ∪ I2| ≤ fK(G)− fK(H1 ∩H2) + 1, (16)

then, since f is strictly admissible with f(K) ≥ 2, we can apply Lemma 5.4
(with ε = 1 and H taken to be H1 ∩H2) to the sequence T ′, resulting in the the
desired subsequence T = S(I) | S with I1 ∪ I2 = I ′ ⊆ I. Therefore, we see that
it suffices to show (16) holds to complete the proof.

From (b), we know

|I1| = |T1| ≤ fK(G)−fK(H1)+1 and |I2| = |T2| ≤ fK(G)−fK(H2)+1. (17)

Now S · S(I1 ∩ I2)[−1] = SH1
· SH2

· S[−1]
H1∩H2

follows in view of (15). Thus S ·
S(I1 ∩ I2)[−1] | SH1+H2

. Consequently, we must have

|I1∩I2| = |S(I1∩I2)| ≥ fK(G)−fK(H1+H2)+1 = f(G)−f(H1+H2)+1, (18)

where the latter equality follows in view of K ≤ H1∩H2. Indeed, if H1+H2 = G,
then (18) follows from the fact that I1 ∩ I2 is nonempty by hypothesis. On
the other hand, if H1 + H2 < G is a proper subgroup and (18) fails, then
|SG\(H1+H2)| ≤ |I1 ∩ I2| ≤ f(G)− f(H1 +H2), contradicting that S is f -stable
with 〈supp(S)〉 = G by hypothesis. But now, combining (18) with (17), we
obtain

|I1 ∪ I2| = |I1|+ |I2| − |I1 ∩ I2|
≤ (fK(G)− fK(H1) + 1) + (fK(G)− fK(H2) + 1)

− (fK(G)− fK(H1 +H2) + 1)

= fK(G)− fK(H1)− fK(H2) + fK(H1 +H2) + 1

≤ fK(G)− fK(H1 ∩H2) + 1,

where the final inequality follows from A2. This establishes (16), completing the
proof as already remarked. �
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Let G be a finite abelian group G, let f : SG → Z+ be a strictly admissible
function, let S = s1 · . . . · s` ∈ F(G) be sequence of terms from G that is f -
stable with |S| = f(G) and 〈supp(S)〉 = G, and let K ≤ G be a subgroup with
f(K) ≥ 2.

Given these hypotheses, we can define an equivalence relation on the terms
of the indexed sequence S by saying sx ∼ sy, where x, y ∈ [1, `], (formally, by
saying x ∼ y, since we regard terms of the indexed sequence as being distinct
when their indices are distinct, regardless of whether sx = sy as elements of G)
provided there exists a subsequence T = S(I) | S, where I ⊆ [1, `], such that

C1. x, y ∈ I,

C2. S · T [−1] is fK-stable

C3. |T | ≤ fK(G)− fK(H) + 1, where H = 〈supp(S · T [−1])〉.
The definition of ∼ is clearly symmetric. To show ∼ is reflexive, i.e., that sx ∼ sx,
apply Lemma 5.4 (with ε = 1 and H taken to be G) to the subsequence T = sx.
Finally, transitivity of ∼ follows from Lemma 5.5. An equivalence class defined
by ∼ will be called an fK-component of S. Of course, since each fK-component
is an equivalence class, we have a factorization S = T1 · . . . · Tr, where the
Ti ∈ F(G) are the fK-components of S.

Lemma 5.6. Let G be a finite abelian group G, let f : SG → Z+ be a strictly
admissible function, let S = s1 · . . . · s` ∈ F(G) be sequence of terms from G that
is f -stable with |S| = f(G) and 〈supp(S)〉 = G, and let K ≤ G be a subgroup
with f(K) ≥ 2.

Suppose T | S is an fK-component of S. Then T satisfies C2 and C3 and
K ≤ H, where H = 〈supp(S · T [−1])〉.

P r o o f. This is a simple consequence of Lemma 5.5. The sequence Tx exhibiting
that sx ∼ sx, where sx is a term of T , shows that there exists a nontrivial
subsequence of T that satisfies C2 and C3. Thus let T ′ = S(I ′) | T be a maximal
length subsequence satisfying C2 and C3, where I ′ ⊆ [1, `]. If, by contradiction,

there is some term sz of T ·T ′[−1]
, then let T ′′ = S(I ′′) be a sequence exhibiting

that sz ∼ sx, where sx is a term of T ′. Then x ∈ I ′ ∩ I ′′ and z ∈ I ′′ \ I ′. Hence
|I ′∪I ′′| > |I ′| = |T ′| and I ′∩I ′′ 6= ∅. Applying Lemma 5.5 to T ′ and T ′′, we find
a third subsequence R = S(J) | S satisfying C2 and C3 with I ′ ∪ I ′′ ⊆ J . All
terms of R must be equivalent, implying R | T , so R contradicts the maximality
of T ′ in view of |I ′∪I ′′| > |T ′|. This shows that the fK-component T must satisfy
C2 and C3. Let H = 〈supp(S ·T [−1])〉. Then |SG\H | ≤ |T | ≤ fK(G)−fK(H)+1,
so that Lemma 5.2 implies K ≤ H, completing the proof. �
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Lemma 5.7. Let G be a finite abelian group G, let f : SG → Z+ be a strictly
admissible function, let S = s1 · . . . · s` ∈ F(G) be sequence of terms from G that
is f -stable with |S| = f(G) and 〈supp(S)〉 = G, and let K ≤ G be a subgroup
with f(K) ≥ 2.

If sx ∈ supp(S)∩K, then sx is an fK-component of S and 〈supp(S ·s[−1]
x )〉 =

G.

P r o o f. Let T = S(I) | S be the component of S that contains sx, so x ∈ I, and
then let H = 〈supp(S ·T [−1])〉. By Lemma 5.6, C2 and C3 hold for T . If H = G,
then C3 implies that |T | = 1, in which case T = sx is itself a component, as
desired. On the other hand, if H < G is proper, then Lemma 5.3 implies that
S ·T [−1] = SH with K ≤ H. In other words, supp(T ) ⊆ G\H ⊆ G\K. However,
this contradicts that sx is a term of T from K. �

Let G be a finite abelian group G, let f : SG → Z+ be an admissible function
such that f(H2) ≥ f(H1)+2 whenever H1 < H2 ≤ G, let S = s1 · . . . ·s` ∈ F(G)
be sequence of terms from G that is f -stable with |S| = f(G) and 〈supp(S)〉 = G,
and let K ≤ G be a subgroup with f(K) ≥ 3. These are the same hypotheses
needed to define fK-components with the mild strengthening of now requiring
f(K) ≥ 3 and f(H2) ≥ f(H1) + 2 instead of f(K) ≥ 2 and f(H2) ≥ f(H1) + 1.

A subsequence T = S(I) | S, where I ⊆ [1, `], is called an fK-near-component
if

NC1. S · T [−1] is fK-stable,

NC2. fK(T ) ≤ fK(G)− fK(H) + 2, where H = 〈supp(S · T [−1])〉, and

NC3. T is a maximal (by inclusion) subsequence of S such that NC1 and NC2
hold.

Lemma 5.8. Let G be a finite abelian group G, let f : SG → Z+ be an admissible
function such that f(H2) ≥ f(H1) + 2 whenever H1 < H2 ≤ G, let S = s1 · . . . ·
s` ∈ F(G) be sequence of terms from G that is f -stable with |S| = f(G) and
〈supp(S)〉 = G, and let K ≤ G be a subgroup with f(K) ≥ 3.

If T | S is an fK-near-component of S, then T contains terms from at least
two distinct fK-components of S and K ≤ H, where H = 〈supp(S · T [−1])〉.
Furthermore, for any two terms sx and sy of S with x, y ∈ [1, `] distinct, there
exists an fK-near-component T = S(I) | S such that x, y ∈ I.

P r o o f. Let T | S be an arbitrary fK-near-component of S and let H =
〈supp(S ·T [−1])〉. In view of the hypothesis f(H2) ≥ f(H1)+2 for H1 < H2 ≤ G
and Lemma 5.2, we have K ≤ H. If, by contradiction, T does not contain
terms from at least two distinct components, then T must be contained in a
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single component of T , in which case the maximality condition NC3 forces T
to be equal to this fK-component. Thus |S| = fK(G) ≥ fK(G)− fK(K) + 3 ≥
fK(G) − fK(H) + 3, where we have made use of the strengthened hypothesis
fK(K) = f(K) ≥ 3 for the first inequality and A1 and K ≤ H for the second.
Consequently, S · T [−1] must contain at least two terms of S (in view of C3 for
the component T ). Let g ∈ supp(S · T [−1]) and apply Lemma 5.4 with ε = 2 to
T · g. Then the resulting sequence U | S satisfies NC1 and NC2 with g · T | U ,
contradicting the maximality condition NC3 for T .

Now assume sx and sy are terms from S with x, y ∈ [1, `] distinct. Applying
Lemma 5.4 (with ε = 2 and H taken to be G) to the subsequence sx · sy, we
find a subsequence T = S(I) | S that satisfies NC1 and NC2 with x, y ∈ I,
meaning T is contained in a maximal subsequence satisfying NC1 and NC2, as
desired. �

Lemma 5.9. Let G be a finite abelian group G, let f : SG → Z+ be an admissible
function such that f(H2) ≥ f(H1) + 2 whenever H1 < H2 ≤ G, let S = s1 · . . . ·
s` ∈ F(G) be sequence of terms from G that is f -stable with |S| = f(G) and
〈supp(S)〉 = G, and let K ≤ G be a subgroup with f(K) ≥ 3.

If T = S(I) | S is an fK-near-component of S, then T = U1 · . . . · Ur, where
each Ui, for i ∈ [1, r], is an fK-component of S. In particular, each Ui = S(Ii)
with Ii ⊆ [1, `] and I1 ∪ . . . ∪ Ir = I a disjoint union.

P r o o f. If the lemma is false, there must exist a component U = S(J) | S such
that I ∩ J 6= ∅ and J * I (recall that the components of S are equivalence

classes, meaning they partition the terms of S). Let H = 〈supp(S · T [−1])〉 and
L = 〈supp(S · U [−1])〉.

We have

|I| = |T | ≤ fK(G)− fK(H) + 2 and |J | = |U | ≤ fK(G)− fK(L) + 1 (19)

in view of NC2 and C3. Now S · S(I ∩ J)[−1] | (S · T [−1]) · (S · U [−1]), in turn
implying S ·S(I ∩J)[−1] | SH ·SL (since S ·T [−1] | SH and S ·U [−1] | SL), which
ensures S · S(I ∩ J)[−1] | SH+L.

Consequently, we must have

|I ∩ J | = |S(I ∩ J)| ≥ fK(G)− fK(H + L) + 1 = f(G)− f(H + L) + 1, (20)

where the latter equality follows in view of K ≤ L (from Lemma 5.2). Indeed,
if H +L = G, then (20) follows from the fact that we initially assumed I ∩ J to
be nonempty. On the other hand, if H + L < G is a proper subgroup and (20)
fails, then |SG\(H+L)| ≤ f(G)− f(H +L), contradicting that S is f -stable with
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〈supp(S)〉 = G. But now, combining (19) with (20) and using A2, we obtain

|I ∪ J | ≤ fK(G)− fK(H ∩ L) + 2

by the same calculation used at the end of the proof of Lemma 5.5. Since S·T [−1] |
SH and S · U [−1] | SL, we have S · S(I ∪ J)[−1] | SH∩L. Apply Lemma 5.4
(with ε = 2 and H taken to be H ∩ L) to the sequence S(I ∪ J). Let W | S
be the resulting sequence satisfying NC1 and NC2 with S(I ∪ J) | W . Then
T = S(I) |W while |W | ≥ |I ∪ J | > |I| in view of our initial assumption J * I.
Thus W contradicts the maximality condition NC3 for the fK-near-component
T = S(I), completing the proof. �

Lemma 5.10. Let G be a finite abelian group G, let f : SG → Z+ be an
admissible function such that f(H2) ≥ f(H1) + 2 whenever H1 < H2 ≤ G,
let S = s1 · . . . · s` ∈ F(G) be sequence of terms from G that is f -stable with
|S| = f(G) and 〈supp(S)〉 = G, and let K ≤ G be a subgroup with f(K) ≥ 3.

If T = S(I) and T ′ = S(I ′) are distinct fK-near-components of S (so I 6= I ′)
with I ∩ I ′ 6= ∅, then U = S(I ∩ I ′) is an fK-component of S.

P r o o f. Let H = 〈supp(S · T [−1])〉 and let H ′ = 〈supp(S · T ′[−1]
)〉. By Lemma

5.9, we know that U = S(I ∩ I ′) is a union of fK-components of S. Our goal is
to show that it is a single fK-component. By NC2, we have

|I| = |T | ≤ fK(G)−fK(H)+2 and |I ′| = |T ′| ≤ fK(G)−fK(H ′)+2. (21)

Now S ·S(I ∩ I ′)[−1] | (S · T [−1]) · (S · T ′[−1]
), in turn implying S ·S(I ∩ I ′)[−1] |

SH · SH′ (since S · T [−1] | SH and S · T ′[−1] | SH′), which ensures

S · S(I ∩ I ′)[−1] | SH+H′ .

In view of Lemma 5.8, we have

K ≤ H ∩H ′.

Suppose

|S(I ∩ I ′)| ≤ fK(G)− fK(H +H ′) + 1.

Then we can apply Lemma 5.4 (with ε = 1 and H taken to be H + H ′) to the
sequence S(I ∩ I ′) to conclude that S(I ∩ I ′) is contained in an fK-component
of S. However, since S(I ∩ I ′) is a union of fK-components, this is only possible
if S(I ∩ I ′) is actually equal to a single fK-component, as desired. So we may
instead assume that this inequality fails:

|S(I ∩ I ′)| ≥ fK(G)− fK(H +H ′) + 2. (22)
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Combining (22) and (21) and using A2, we find, as argued in Lemma 5.5 and
Lemma 5.9, that

|I ∪ I ′| = |S(I ∪ I ′)| ≤ fK(G)− fK(H ∩H ′) + 2.

Also, supp(S · S(I ∪ I ′)[−1]) ⊆ supp(S · S(I)[−1]) = supp(S · T [−1]) ⊆ H and

supp(S · S(I ∪ I ′)[−1]) ⊆ supp(S · S(I ′)[−1]) = supp(S · T ′[−1]
) ⊆ H ′, so that

supp(S ·S(I∪I ′)[−1]) ⊆ H∩H ′. Thus we may apply Lemma 5.4 (with ε = 2 and
H taken to be H ∩H ′) to S(I ∪ I ′). Let W be the resulting sequence satisfying
NC1 and NC2 with S(I ∪ I ′) | W . Then, since |W | ≥ |I ∪ I ′| with I 6= I ′ (by
hypothesis), this contradicts the maximality condition NC3 for either T = S(I)
or T ′ = S(I ′), completing the proof. �

Lemma 5.11. Let G be a finite abelian group G, let f : SG → Z+ be an
admissible function such that f(H2) ≥ f(H1) + 2 whenever H1 < H2 ≤ G,
let S = s1 · . . . · s` ∈ F(G) be sequence of terms from G that is f -stable with
|S| = f(G) and 〈supp(S)〉 = G, and let K ≤ G be a subgroup with f(K) ≥ 3.

If T | S is an fK-near-component of S and sx ∈ supp(T ) ∩K, then T · s[−1]
x

is an fK-component of S.

P r o o f. Let H = 〈supp(S · T [−1])〉 and let S′ = S · T [−1]. By Lemma 5.8, we
have K ≤ H. From NC2, we have

|T · s[−1]
x | ≤ fK(G)− fK(H) + 1. (23)

By NC1, we have

|(S′ · sx)H\L| ≥ |S′H\L| ≥ fK(H)− fK(L) + 1

for any proper subgroup L < H. Moreover, since sx ∈ K ≤ H, we have 〈supp(S′ ·
sx)〉 = 〈supp(S′)〉 = 〈supp(S · T [−1])〉 = H, so that S′ · sx = S · T [−1] · sx =

S · (T · s[−1]
x )[−1] is fK-stable. Combined with (23), this shows that T · s[−1]

x

satisfies C2 and C3 and is thus contained in an fK-component of S (as this

shows all terms from T · s[−1]
x are equivalent to each other under ∼).

By Lemma 5.7, we know sx is an fK-component of S. In consequence, Lemma

5.9 implies that T · s[−1]
x is a union of fK-components. However, since T · s[−1]

x

was just shown to be contained in an fK-component of S, the only way this is

now possible is if T · s[−1]
x is itself an fK-component of S, as desired. �

We now come to the crux of the section, showing that the above setup leads
to a well-defined pairwise balanced design with λ = 1.

Theorem 5.12. Let G be a finite abelian group G, let f : SG → Z+ be an
admissible function such that f(H2) ≥ f(H1) + 2 whenever H1 < H2 ≤ G,
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let S = s1 · . . . · s` ∈ F(G) be sequence of terms from G that is f -stable with
|S| = f(G) and 〈supp(S)〉 = G, and let K ≤ G be a subgroup with f(K) ≥ 3.

Let S = T1 · . . .·Tr, where the Ti = S(Ii) ∈ F(G) are the fK-components of S.
Let H be the hypergraph whose vertices are the fK-components of S (formally,
the integers from [1, r]) with edges corresponding to the fK-near-components via
Lemma 5.9, so A ⊆ [1, r] is an edge when S(

⋃
i∈A Ii) = •

i∈A
Ti is an fK-near-

component of S. Then H is a pairwise balanced design with every pair of vertices
contained in a unique edge.

P r o o f. In view of Lemma 5.9, the hypergraph H is well-defined. Moreover,
Lemmas 5.9 and 5.8 ensure that any two components are contained in a common
near-component. Finally, if two distinct components of S were contained in two
distinct near-components T = S(I) and T ′ = S(I ′), then the intersection of these
near-components would contain at least two components, contrary to Lemma
5.10. The theorem follows. �

6. Proof of Theorems 1.1 and 1.2

We begin with the lower bound.

Lemma 6.1. Let n ≥ 1 be an odd integer. Then

DU2
n
(Z/nZ) ≥ 2Ω(n) + 1 + min{v3(n), v5(n)}.

P r o o f. Let n3 = v3(n) and let n5 = v5(n). Let

G = G3 ×G5 ×Gp1 × . . .×Gpr ∼= Z/nZ,
where p1, . . . , pr are the distinct prime divisors of n that are greater than 5,

G3 = Z/3n3Z, G5 = Z/5n5Z, and each Gpi = Z/qiZ with qi = p
vpi (n)

i for
i = 1, . . . , r. It is easily seen that

DU2
n
(Z/nZ) = DU2

G
(G) ≥ DU2

H
(H) +

r∑
i=1

(DU2
qi

(Z/qiZ)− 1), (24)

where H = G3 ×G5.

Let p be a prime and let K = Z/qZ with q = pm. We say that k, k̃ ∈ K

are quadratically equivalent (resp. inequivalent) modulo p if kk̃ is a non zero
square (resp. is not a square) modulo p. We first assume that p ≥ 7. Let S

be a sequence of length 2Ω(pm) = 2m consisting of two terms piki, p
ik̃i from

piK \ pi+1K, for i = 0, 1, . . . ,m − 1, such that ki, k̃i are either quadratically
equivalent modulo p (if p ≡ −1 mod 4) or quadratically inequivalent modulo p
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(if p ≡ 1 mod 4). Suppose T | S is a U2
K-weighted zero-sum. Let j ∈ [0,m− 1]

be the minimal integer such that T contains a term from pjK \pj+1K. Then, by
construction of S, it follows that T contains either a single unit (i.e., generator)

from K ′ = 〈supp(T )〉 = pjK or else exactly two units pjkj , p
j k̃j from K ′, such

that kj , k̃j are either quadratically equivalent modulo p (if p ≡ −1 mod 4) or
quadratically inequivalent modulo p (if p ≡ 1 mod 4). It is then clear from
Lemma 4.2 that T cannot be a U2

K-weighted zero-sum. So we instead conclude
that S is free of U2

K-weighted zero-sums, implying

DU2
q
(Z/qZ) ≥ |S|+ 1 = 2m+ 1 for any prime p ≥ 7

and q = pm with m ≥ 0. (25)

Let m = min{n3, n5} and let M = max{n3, n5}. If n5 > n3, let

hi = (0, 5n5−m−igi),

h̃i = (0, 5n5−m−ig̃i) ∈ {0} × 5n5−m−iG5 \ 5n5−m−i+1G5 ⊆ H,
for i = 1, 2, . . . , n5 −m = n5 − n3 = M −m,

be two elements such that gi, g̃i are quadratically inequivalent modulo 5 (say
gi = 1 and g̃i = 2). If n5 < n3, let

hi = (3n3−m−i+1gi, 0),

h̃i = (3n3−m−i+1g̃i, 0) ∈ 3n3−m−iG3 \ 3n3−m−i+1G3 × {0} ⊆ H,
for i = 1, 2, . . . , n3 −m = n3 − n5 = M −m,

be two elements such that gi, g̃i are quadratically equivalent modulo 3 (say gi =
g̃i = 1).

Set

S = (3n3−1, 5n5−1)[5] · (3n3−2, 5n5−2)[5] · . . . · (3n3−m, 5n5−m)[5] ·M−m•
i=1

(hi · h̃i)

∈ F(G3 ×G5).

Observe that |S| = 5m+ 2(M −m) = 2M + 3m = 2n3 + 2n5 +m = 2Ω(|H|) +
min{n3, n5}. Suppose T | S is a nontrivial U2

H -weighted zero-sum subsequence.
Similar to the case when p ≥ 7, Lemma 4.2 ensures that T cannot contain either
hM−m nor h̃M−m, in which case Lemma 4.2 further implies T cannot contain

either hM−m−1 nor h̃M−m−1. Continuing in this fashion, we see that Lemma 4.2

ensures that T cannot contain any of the terms hi nor h̃i for i = 1, . . . ,M −m.
Thus

T | (3n3−1, 5n5−1)[5] · (3n3−2, 5n5−2)[5] · . . . · (3n3−m, 5n5−m)[5]. (26)
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Let j ∈ [1,m] be the maximal integer such that h := (3n3−j , 5n5−j) ∈
supp(T ). Thus h is a unit modulo both 5 and 3 in

H ′ = 〈supp(T )〉 = H ′3 ×H ′5,

where

H ′3 = 3n3−jG3
∼= Z/3jZ and H ′5 = 5n5−jG5

∼= Z/5jZ,

i.e., π2(h) = 5n5−j is a generator ofH ′5
∼= Z/5jZ and π1(h) = 3n3−j is a generator

of H ′3
∼= Z/3jZ, where

π1 : G3 ×G5 → G3 and π2 : G3 ×G5 → G5

are the i-th coordinate projection homomorphisms. Moreover, any term of T
that is unit modulo either 5 or 3 in H ′ must be equal to h.

Since T ∈ F(H ′) is a U2
H -weighted zero-sum sequence (and thus also a U2

H′ -
weighted zero-sum by Lemma 3.1) and U2

H′ = U2
H′3
×U2

H′5
, it follows that π1(T ) ∈

F(H ′3) is also a U2
H′3

-weighted zero-sum sequence. Since U2
H′3

= 1+3H ′3, the only

way this is possible is if π1(σ(T )) ∈ 3H ′3 = 3n3−j+1G3. In view of the definition
of j and (26), this is only possible if the term h = (3n3−j , 5n3−j) occurs with
multiplicity a multiple of 3 in T , forcing vg(T ) = 3. Since T is a U2

H′ -weighted
zero-sum sequence and U2

H′ = U2
H′3
× U2

H′5
, it follows that π2(T ) ∈ F(H ′5) is

also a U2
H′5

-weighted zero-sum sequence. However, since vg(T ) = 3, we see that

π2(T ) contains exactly 3 units (i.e, generators) 5n5−jg, 5n5−jg′, 5n5−jg′′ from
H ′5 = 5n5−jG5

∼= Z/5jZ, all of them equal to π2(h), implying that g, g′, g′′ are
all quadratically equivalent, contrary to Lemma 4.1. So we instead conclude that
S contains no U2

H -weighted zero-sum, implying

DU2
H

(H) ≥ |S|+ 1 = 2Ω(|H|) + 1 + min{n3, n5}. (27)

Combining (24), (25), and (27), the desired lower bound follows. �

Next, we finish the case when 3 - n.

P r o o f o f T h e o r e m 1.1.1 a n d T h e o r e m 1.2.1. The case n = 1 in The-
orem 1.1.1 is trivial, so let n ≥ 3 be an odd integer with gcd(n, 3) = 1 and
let

G = Gp1 × . . .×Gpr ∼= Z/nZ,

where p1, . . . , pr are the distinct prime divisors of n and each Gpi = Z/pnii Z
with ni = vpi(n). If a prime p - n, then set Gp to be the trivial group. The
lower bound for Theorem 1.1.1 follows from Lemma 6.1. As explained in the
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introduction, the upper bound for Theorem 1.1.1 follows from Theorem 1.2.1.
Thus it remains to prove the upper bound for Theorem 1.2.1. To that end, let

m ≥ 3ω(n) + min{1, v5(n)}
be an integer. For a sequence S ∈ F(G) with |S| ≥ m+ 2Ω(n), we need to show
that 0 ∈ Σ∪m(U2

G(S)).

Clearly, we may assume v0(S) ≤ m− 1, else the desired conclusion is trivial.
Thus, if n = p ≥ 7 is a prime, then there are at least 2Ω(n) + 1 = 3 = 3ω(n)
units in S, in which case 0 ∈ G = Σ∪m(U2

G(S)) follows from Lemma 4.3.1 in view
of m ≥ 3. Likewise, if n = 5, then there are at least 2Ω(n)+1 = 3 = 3ω(n) units
in S. If this inequality is strict, then 0 ∈ G = Σ∪m(U2

G(S)) follows from Lemma
4.3.2 in view of m ≥ 4. If it holds with equality, then Lemma 4.3.3 instead
implies either 0 ∈ G = Σ∪m(U2

G(S)) (if the three units are not quadratically

equivalent modulo 5) or 0 ∈ 5G ⊆ Σ∪m(U2
G(S · g[−1])) ⊆ Σm(U2

G(S)) (if they are
quadratically equivalent), where g ∈ supp(S) is a unit. In all cases, we obtain the
desired result. So we may assume Ω(n) ≥ 2 and proceed by induction assuming
the theorem known for all proper subgroups of G ∼= Z/nZ.

Since G is cyclic, the subgroups of G are in 1–1 correspondence with the
divisors d | n. Let f : SG → Z+ be the function given by f(H) = f(|H|) =
m + 2Ω(|H|). Observe that f(lcm(d1, d2)) = f(d1) + f(d2) − f(gcd(d1, d2)) for
any divisors di | n. Thus the function f is admissible with

f(H2) ≥ f(H1) + 2 whenever H1 < H2 ≤ G. (28)

Let K = G5 ≤ G be the subgroup of order 5v5(n). Then

f(K) ≥ f({0}) = m ≥ 3ω(n) + min{1, v5(n)} ≥ 3.

Let S = s1 · . . . · s|S| ∈ F(G) be a sequence with

|S| = f(G) = m+ 2Ω(n)

that, by contradiction, does not have 0 ∈ Σm(U2
G(S)). We may assume that

〈supp(S)〉 = G, else 0 ∈ Σm(U2
|H|(SH)) = Σm(U2

G(S)) follows by induction and

Lemma 3.1, where H = 〈supp(S)〉, contradicting that S contains no U2
G-weighed

zero-sum of length m. Likewise, we must have |SH | ≤ f(H) − 1 for any proper
subgroup H < G, for otherwise applying the induction hypothesis to SH again

yields 0 ∈ Σm(U2
|H|(SH)) = Σm(U2

G(S)), contradicting via Lemma 3.1 that S

contains no U2
G-weighted zero-sum of length m, as before. As a result, we have

|SG\H | ≥ |S| − f(H) + 1 = f(G)− f(H) + 1 ≥ 3 (29)

for any an proper subgroup H < G. In particular, we see that S is f -stable and
now have all the needed hypotheses to talk of fK-components.
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If 5 - n, then let W | S be a subsequence with |W | = m and |WG\pG| ≥ 3 for
each prime p | n (i.e., W contains at least 3 units modulo p). Such a subsequence
W exists in view of (29) and |S| ≥ m ≥ 3ω(n). Applying Lemma 4.3.1 to W ,
it follows that 0 ∈ G = Σm(U2

G(W )) ⊆ Σm(U2
G(S)), contrary to assumption.

Therefore, we may now assume 5 | n, so that 5G < G is a proper subgroup.

If (29) is strict for H = 5G, then let W | S be a subsequence with |W | = m,
|WG\5G| ≥ 4 and |WG\pG| ≥ 3 for each prime p | n. Such a subsequence W exists
in view of (29) and |S| ≥ m ≥ 3ω(n) + 1. Applying Lemmas 4.3.1 and 4.3.2 to
W , it follows that 0 ∈ G = Σm(U2

G(W )) ⊆ Σm(U2
G(S)), contrary to assumption.

Therefore, we instead assume |SG\5G| = 3.

If the three terms of SG\5G are not quadratically equivalent modulo 5, then
let W | S be a subsequence with |W | = m and |WG\pG| ≥ 3 for each prime p | n.

Applying Lemmas 4.3.1 and 4.3.3 to W , it follows that 0 ∈ G = Σm(U2
G(W )) ⊆

Σm(U2
G(S)), contrary to assumption. So we may w.l.o.g now assume

SG\5G = s1 · s2 · s3

consists of three terms all quadratically equivalent to each other modulo 5.

Let T = S(I), where I ⊆ [1, f(G)], be the fK-component containing s1, so
1 ∈ I, and let

H = 〈supp(S · T [−1])〉.

By Lemma 5.6, we have K ≤ H with S · T [−1] fK-stable and

|S ·T [−1]| = |S|−|T | ≥ fK(H)−1 = f(H)−1 = m+2Ω(|H|)−1 ≥ m+1. (30)

We cannot have SG\5G = s1 · s2 · s3 | T , as then supp(S · T [−1]) contains

no generator modulo 5, making 〈supp(S · T [−1])〉 = H impossible in view of
G5 = K ≤ H. This leaves us with two cases.

Case 1:

I ∩ [1, 3] = {1}. In this case, s2 ·s3 | S ·T [−1]. Since S′ = S ·T [−1] is fK-stable
with K = G5 ≤ H (so that K + pH = pH for p 6= 5), we have

|S′G\pH | ≥ fK(H)− fK(pH) + 1 = f(H)− f(pH) + 1 ≥ 3

for any prime divisor p ≥ 7 of |H|, where the final inequality comes from (28).
Thus, in view of m ≥ 3ω(n)+1 ≥ 3ω(|H|) and (30), let W | S′ be a subsequence
with |W | = m, with s2 · s3 | W , and with |WH\pH | ≥ 3 for any prime divisor
p ≥ 7 of |H|. Since s2 and s3 are quadratically equivalent modulo 5, applying
Lemmas 4.3.1 and 4.3.3 to W yields 0 ∈ 5G ⊆ Σm(U2

G(W )) ⊆ Σm(U2
G(S)),

contrary to assumption.
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Case 2:

I ∩ [1, 3] = {1, 2} or I ∩ [1, 3] = {1, 3}. In this case, we may w.l.o.g assume
I ∩ [1, 3] = {1, 2}. Let T ′ = T · s3. Then T ′ contains the only three terms s1, s2

and s3 that are generators modulo 5. Consequently, H ′ = 〈supp(S ·T ′[−1]
)〉 < H

since K = G5 ≤ H and supp(S ·T ′[−1]
) contains no generators modulo 5. Hence

|SG\H′ | ≤ |T ′| = |T |+ 1 ≤ fK(G)− fK(H) + 2 ≤ fK(G)− fK(H ′),

where the first inequality follows by C3 for the fK-component T (cf. Lemma 5.6),
and the second from H ′ < H and (28), contradicting that S is fK-stable. �

Finally, we finish with the case when 3 | n.

P r o o f o f T h e o r e m 1.1.2, T h e o r e m 1.1.3 a n d T h e o r e m 1.2.2. It is
clear that Theorem 1.1.2 follows from Theorem 1.1.3. The lower bound for The-
orem 1.1.3 follows from Lemma 6.1. As the upper bound for Theorem 1.1.3
follows from Theorem 1.2.2 as explained in the introduction, it remains to prove
Theorem 1.2.2.

The case when 3 - n in Theorem 1.1.2 follows from the already established
Theorem 1.1.1. Therefore we may assume n ≥ 3 is an odd integer with 3 | n. Let

G = Gp1 × . . .×Gpr ∼= Z/nZ,

where p1, . . . , pr are the distinct prime divisors of n and each Gpi = Z/pnii Z with
ni = vpi(n). Let

m ≥ 4Ω(n) + ω(n) + v5(n)− 2 (31)

be an integer with 3 | m. For a sequence S ∈ F(G) with |S| ≥ m+2Ω(n)+v5(n),
we need to show that 0 ∈ Σ∪m(U2

G(S)). Observe that (31) implies

m ≥ 5ω(n)− 2 + min{1, v5(n)} and (32)

m ≥ 4Ω(n) + v5(n)− 2v3(n) + 1. (33)

If Ω(n) = 1, then, since 3 | n, we must have G = Z/3Z, in which case
U2
G = {1}. Then |S| ≥ m+ 2Ω(n) + v5(n) = m+ 2 = m− 1 + |G|, in which case

0 ∈ Σ∪m(U2
G(S)) follows from repeated application of the Erdős-Ginzburg-Ziv

Theorem [Gr, Theorem 10.1] in view of 3 | m and |G| = 3. Therefore, we may
assume Ω(n) ≥ 2 and proceed by induction assuming the theorem known for all
proper subgroups of G ∼= Z/nZ.

Since G is cyclic, the subgroups of G are in 1–1 correspondence with the
divisors d | n. Let f : SG → Z+ be the function given by

f(H) = f(|H|) = m+ 2Ω(|H|) + v5(|H|)
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and let g : SG → Z+ be the function given by

g(H) = g(|H|) = m− 2Ω(n) + 2v3(n) + 4Ω(|H|) + v5(|H|)− 2v3(|H|).
Observe that m ≥ 2Ω(n) + 1 in view of (31), so that g(H) ≥ 1 holds for all
H ≤ G. Also observe that f(lcm(d1, d2)) = f(d1) + f(d2) − f(gcd(d1, d2)) for
any divisors di | n, and likewise for g. Thus the functions f and g are strictly
admissible with

f(H2) ≥ f(H1) + 2 whenever H1 < H2 ≤ G. (34)

Let K = G3 ≤ G be the subgroup of order 3v3(n). Then

f(K) ≥ f({0}) = m ≥ 3.

Let S = s1 · . . . · s|S| ∈ F(G) be a sequence with

|S| = f(G) = g(G) = m+ 2Ω(n) + v5(n)

that, by contradiction, does not have 0 ∈ Σm(U2
G(S)). We may assume that

〈supp(S)〉 = G, else 0 ∈ Σm(U2
|H|(SH)) = Σm(U2

G(S)) follows by induction and

Lemma 3.1, where H = 〈supp(S)〉, contradicting that S contains no U2
G-weighed

zero-sum of length m. Likewise, we must have |SH | ≤ f(H) − 1 for any proper
subgroup H < G, for otherwise applying the induction hypothesis to SH again

yields 0 ∈ Σm(U2
|H|(SH)) = Σm(U2

G(S)), contradicting via Lemma 3.1 that S

contains no U2
G-weighted zero-sum of length m, as before. As a result, S is f -

stable and

|SG\H | ≥ |S| − f(H) + 1 = f(G)− f(H) + 1 ≥ 3 (35)

for any proper subgroup H < G. Consequently, we now have all the needed
hypotheses to apply the machinery of Section 5. However, before doing so, we
need to establish two additional claims.

Claim A

Our next goal is to show that—replacing, if need be, S by S − x for some
x ∈ G such that 0 ∈ Σm(U2

G(S − x)) implies 0 ∈ Σm(U2
G(S))—we may assume

v0(S) ≥ g({0}) = m− 2Ω(n) + 2v3(n). (36)

Since |S| = g(G) ≥ g(G) − g({0}) + 1, we can apply Lemma 5.1 to S using
the admissible function g : SG → Z+. Indeed, we can apply Lemma 5.1 using
the admissible function g to any translated sequence S − x, so long as x ∈ G is
an element such that 0 ∈ Σm(U2

G(S − x)) implies 0 ∈ Σm(U2
G(S)). Over all such

potential x ∈ G, suppose x ∈ G is one such that S−x has the resulting subgroup
H ≤ G from the application of Lemma 5.1 being minimal, and replacing S by
S − x, w.l.o.g. assume x = 0.
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From Lemma 5.1, we have that H ≤ G is g-stable in S with

|SH | = |S| − |SG\H | ≥ g(|H|)
= m− 2Ω(n) + 2v3(n) + 4Ω(|H|) + v5(|H|)− 2v3(|H|). (37)

If H is trivial, then (36) follows, as claimed, so instead assume H ≤ G is non-
trivial. Let W ′ | SH be a minimal length subsequence such that

|W ′H\3H | ≥ g(H)− g(3H) + 1 = 3 if 3 | |H|,
|W ′H\5H | ≥ g(H)− g(5H) + 1 = 6 if 5 | |H|, and

|W ′H\pH | ≥ g(H)− g(pH) + 1 = 5 for any prime p | |H| with p ≥ 7.

(38)

Since SH is g-stable (as H is g-stable in S by the application of Lemma 5.1), it
follows that (38) holds with W ′ = SH , so W ′ exists. Moreover, we clearly have

3 ≤ |W ′| ≤ 5ω(|H|)− 2 min{1, v3(|H|)}+ min{1, v5(|H|)}
≤ 5ω(n)− 2 + min{1, v5(n)}, (39)

where for the latter inequality we have made use of the fact that 3 | n (to ensure
that H < G is proper when v3(|H|) = 0). As a result, (32) ensures that

|W ′| ≤ m. (40)

From (37) and (33), we have

|SH | ≥ 2Ω(n) + v5(n) + 1 + 4Ω(|H|) + v5(|H|)− 2v3(|H|)
≥ 2Ω(n) + v5(n) + min{1, v5(|H|)}+ 5ω(|H|)− 2Ω(|H|)− v5(|H|)

=
(

5ω(|H|)− 2 + min{1, v5(|H|)}
)

+
(

2Ω(|G/H|) + v5(|G/H|)
)

+ 2

≥
(

5ω(|H|)− 2 + min{1, v5(|H|)}
)

+
(
DU2

G/H
(G/H)− 1

)
+ 2, (41)

where the final inequality follows by applying the induction hypothesis to G/H
(possible, since H is assumed non-trivial). Additionally, (37) and (33) give

|SH | ≥ 2Ω(n) + v5(n) + 1 + 4Ω(|H|) + v5(|H|)− 2v3(|H|)
≥ 2Ω(n) + v5(n) + 2. (42)

Next, we wish to extend the sequence W ′ | SH , which has |W ′| ≤ m in view
of (40), to a subsequence W | S such that

W ′ |W, |W | = m, σ(U2
G(WG\H)) ∩H 6= ∅ (43)

and, moreover,

|SH ·W [−1]
H | ≥ 2 if 3 | |H|. (44)

To do this, we iteratively pull off subsequences T1 · . . . · Ts | SG\H that have

σ(U2
G(Ti)) ∩ H 6= ∅ and |Ti| ≤ DU2

G/H
(G/H). This can be done in view of (5)

30



A WEIGHTED ZERO-SUM PROBLEM WITH QUADRATIC RESIDUES

(and the comments thereafter) until either |W ′ · T1 · . . . · Ts · Ts+1| ≥ m + 1 or
|SG\H · (T1 · . . . · Ts)[−1]| ≤ DU2

G/H
(G/H)− 1.

In the former case, assuming s + 1 is the minimal index such that |W ′ · T1 ·
. . . · Ts · Ts+1| ≥ m+ 1, we then have

m− DU2
G/H

(G/H) + 1 ≤ m+ 1− |Ts+1| ≤ |W ′ · T1 · . . . · Ts| ≤ m.

Consequently, in view of (39) and (41), we see that we can extend W ′ ·T1 · . . . ·Ts
to a subsequence W satisfying (43) and (44) by simply adding an appropriate

number of terms from SH ·W ′[−1]
.

In the latter case, we have

|SG\H · (T1 · . . . · Ts)[−1]| ≤ DU2
G/H

(G/H)− 1 ≤ 2Ω(|G/H|) + v5(|G/H|)

≤ 2Ω(n) + v5(n)− 2 ≤ |S| −m− 2,

where the second and third inequalities follow in view of the induction hypothesis
applied to G/H and H ≤ G being nontrivial. Hence |SH · T1 · . . . · Ts| ≥ m+ 2.
Thus, since |W ′ · T1 · . . . · Ts| ≤ m (else the former case holds), we can again

simply add an appropriate number of terms from SH ·W ′[−1]
to result in the

sequence W satisfying (43) and (44). As a result, we see that in either case we
arrive at the subsequence W | S with the desired properties (43) and (44).

In view of (43), let α ∈ σ(U2
G(WG\H)) ∩ H. If σ(WH) + α ∈ 3H, then—

in view of W ′ | W , (38) and (43)—we can apply Lemma 4.3 to conclude that
0 ∈ 3H ⊆ σ(U2

G(W )) = Σm(U2
G(W )) ⊆ Σm(U2

G(S)), contrary to assumption. So
we can assume otherwise. In particular, we must have 3 | |H|, in which case (44)
assures us that there are at least two terms from SH outside W .

If x · y | SH ·W [−1]
H and x′ · y′ |WH , then we can swap x for x′, or y for y′, or

x · y for x′ · y′ to result in a new sequence V = W · x′[−1] · x or V = W · y′[−1] · y
or V = W · (x′ · y′)[−1] · x · y that can miss at most two terms from W ′ (in the
event that one or both of the terms being swapped out of W were from W ′).
Thus (38) implies

|VH\3H | ≥ 1 if 3 | |H|,
|VH\5H | ≥ 4 if 5 | |H|, and (45)

|VH\pH | ≥ 3 for any prime p | |H| with p ≥ 7.

In particular, 〈supp(V )〉 = 〈supp(W )〉 = H and VG\H = WG\H .

Now, if some such swap results in a sequence V with σ(VH) + α ∈ 3H, then
applying Lemma 4.3 yields 0 ∈ 3H ⊆ σ(U2

G(V )) = Σm(U2
G(V )) ⊆ Σm(U2

G(S)), a
contradiction as before. So may instead assume we always have σ(VH) ∈ −α +
1 + 3H or σ(VH) ∈ −α − 1 + 3H (note that H/3H ∼= Z/3Z as 3 | |H| with H
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cyclic). It is easily seen that this is only possible if all but at most one term of SH
is from the same 3H-coset. Indeed, if this assertion fails and there does not exist
some g ∈ supp(SH) such that |supp(SH ·g[−1])| = 1, then it is possible to choose

x · y | SH ·W [−1]
H and x′ · y′ |WH such that x− x′ /∈ 3H and y − y′ /∈ 3H (since

|W ′| ≥ 2 and since there are at least two terms from SH outside W ), in which
case σ(VH)+{0, x−x′}+{0, y−y′}+3H represents the possible values for σ(VH)
modulo 3H when we allow V to be obtained from W by either not swapping any

terms (so V = W ), swapping x for x′ (so V = W · x′[−1] · x), swapping y for y′

(so V = W · y′[−1] · y), or swapping x · y for x′ · y′ (so V = W · (x′ · y′)[−1] ·x · y).
However, applying the Cauchy-Davenport Theorem ([Gr, Theorem 6.2]), we find
that σ(VH) + {0, x− x′}+ {0, y− y′}+ 3H = H, which means that at least one
of these four possible ways to define V has σ(VH) + α ∈ 3H, contradicting that
this should fail for all of them as noted above. In summary, we have just shown
that all but at most one term from SH is from the same 3H-coset, say x + 3H
with x ∈ G3 (we may assume x ∈ G3 as G3 contains a full set of 3H-coset
representatives).

We cannot have x+ 3H = 3H, as then |SH\3H | ≤ 1, contrary to (38). There-
fore, we may instead assume x ∈ H \3H, so that ord(x) = 3α (in view of x ∈ G3)
with α = v3(|H|). In view of (42), we have at least 2Ω(n)+v5(n)+1 = |S|−m+1
terms si of S with v3(ord(si)) = α (namely, all but at most one term of SH).
Thus we can invoke Lemma 3.2 to conclude that 0 ∈ Σm(U2

G(S−x)) implies 0 ∈
Σm(U2

G(S)). Since the latter is assumed to fail, this means 0 /∈ Σm(U2
G(S − x)).

By removing at most one additional term from SH−x, we find that all remaining
terms are from 3H < H. But this means that if we apply Lemma 5.1 to S − x,
then the resulting minimal subgroup H ′ will have H ′ ≤ 3H < H, contradicting
the minimality assumption assumed for H ≤ G at the beginning of Claim A,
which completes the proof of the claim.

As already established, we have all the needed hypotheses to apply the ma-
chinery of Section 5 to the f -stable sequence S using the admissible function
fK . In view of Claim A and (33), we have v0(S) ≥ 2Ω(n) + v5(n) + 1. Thus

W = S · 0[−2Ω(n)−v5(n)]

is a subsequence of S with |W | = m.

Claim B

If T |W is a subsequence such that S · T [−1] is fK-stable and |T | ≤ 2Ω(n) +
v5(n), then σ(W · T [−1]) /∈ 3H, where H = 〈supp(S · T [−1])〉.
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Let W ′ = W · T [−1] · 0[|T |]. In view of |T | ≤ 2Ω(n) + v5(n), we have W ′ | S.
Since S′ = S · T [−1] is fK-stable, and since all terms outside W are zero, it
follows that 〈supp(W ′)〉 = 〈supp(S · T [−1])〉 = H, that |W ′H\pH | = |S′H\pH | ≥
fK(H)− fK(pH) + 1 = 3 for any prime p | |H| with p ≥ 7, and that |W ′H\5H | =
|S′H\5H | ≥ fK(H)−fK(5H)+1 = 4 if 5 | |H|. Thus, if σ(W ·T [−1]) ∈ 3H were to

hold by contradiction, then applying Lemma 4.3 to W ′ yields 0 ∈ σ(U2
G(W ′)) =

Σm(U2
G(W ′)) ⊆ Σm(U2

G(S)) in view of W ′ | S, which is contrary to assumption,
completing the claim.

Since S is f -stable, and thus also fK-stable, we can apply Claim B taking T
be the trivial sequence and thereby conclude that

π(σ(W )) ≡ x mod 3G3 for some x ∈ G3 \ 3G3, (46)

where π : G→ G3 denotes the projection homomorphism onto the 3-component
G3 = Z/3n3Z.

Let T | S be an arbitrary fK-component of S with T | W and let H =
〈supp(S · T [−1])〉. Then Lemma 5.6 implies that K ≤ H, that S · T [−1] is fK-
stable, and that

|T | ≤ fK(G)− fK(H) + 1 = 2Ω(n)− 2Ω(|H|) + v5(n)− v5(|H|) + 1

≤ 2Ω(n)− 2Ω(|K|) + v5(n)− v5(|K|) + 1 ≤ 2Ω(n) + v5(n)− 1,

where we have made free use of {0} 6= G3 = K ≤ H ≤ G. Since G3 = K ≤ H,
we have G3 ≤ H = 〈supp(S · T [−1])〉. Consequently, if π(σ(T )) ≡ x mod 3G3,
then (46) implies that σ(W · T [−1]) ∈ 3H, contrary to Claim B. Therefore we
instead conclude that

π(σ(T )) ≡ 0 or − x mod 3G3 (47)

for any fK-component T with T |W (note that G3/3G3
∼= Z/3Z, so any nonzero

residue class not equal to x must be equal to −x).

Let T | S be an arbitrary fK-near-component of S with T | W and let
H = 〈supp(S · T [−1])〉. Then Lemma 5.8 implies that K ≤ H, while NC1 and
NC2 imply that S · T [−1] is fK-stable and that

|T | ≤ fK(G)− fK(H) + 2 = 2Ω(n)− 2Ω(|H|) + v5(n)− v5(|H|) + 2

≤ 2Ω(n)− 2Ω(|K|) + v5(n)− v5(|K|) + 2 ≤ 2Ω(n) + v5(n),

where we have made free use of {0} 6= G3 = K ≤ H ≤ G. Since G3 = K ≤ H,
we have G3 ≤ H = 〈supp(S · T [−1])〉. Consequently, if π(σ(T )) ≡ x mod 3G3,

33



D.J. GRYNKIEWICZ — F. HENNECART

then (46) implies that σ(W · T [−1]) ∈ 3H, contrary to Claim B. Therefore, as
before, we instead conclude that

π(σ(T )) ≡ 0 or − x mod 3G3 (48)

for any fK-near-component T with T |W .

In view of Lemma 5.7, we know that any term of S equal to 0 ∈ K is itself
anfK-component of S. Thus, since all terms of S outside W are equal to 0, it
follows that S ·W [−1] is a union of fK-components, implying that W is likewise a
union of fK-components. In particular, if T | S is a component such that T -W ,
then T = 0 and π(σ(T ))) ≡ 0 mod 3G3. Since all terms of S ·W [−1] are equal
to 0 ∈ K, Lemma 5.11 implies that any fK-near-component T with T - W can
contain at most one fK-component dividing W .

In view of (47), let W = T1 · . . . · Tv · U1 · . . . · Us, where the Ti are the
components of S with π(σ(Ti)) ≡ −x mod 3G3 and the Ui are the components
of S dividing W with π(σ(Ui)) ≡ 0 mod 3G3. Then (in view of (46))

x ≡ π(σ(W )) ≡
v∑
i=1

π(σ(Ti)) ≡ −vx mod 3G3,

implying that
v ≡ −1 mod 3. (49)

If T | S is an fK-near-component of S that contains at least two fK-components
Ti and Tj with π(σ(Ti)) ≡ π(σ(Tj)) ≡ −x mod 3G3, then T | W (as shown
in the previous paragraph), whence (48) gives π(σ(T )) ≡ −x or 0 mod 3G3.
Clearly, π(σ(T )) ≡ −eTx mod 3G3, where eT is the number of fK-components
U that divide T and have π(σ(U)) ≡ −x mod 3G3, which means that

eT ≡ 1 or 0 mod 3

for any near-component T containing at least two components Ti and Tj with
π(σ(Ti)) ≡ π(σ(Tj)) ≡ −x mod 3G3.

By Theorem 5.12, the hypergraph H whose vertices correspond to the fK-
components of S and whose edges correspond to the fK-near-components of S
is a pairwise balanced design with λ = 1. Let H′ be the sub-hypergraph induced
by all those vertices (i.e., components) Ti such that π(σ(Ti)) ≡ −x mod 3G3

(discarding all edges of size 1). In other words, the vertices of H′ are those
T1, . . . , Tr defined in the previous paragraph, and the edges of H′ correspond to
those near-components T | W that contain at least two distinct components Ti
and Tj . Then H′ is also a pairwise balanced design with λ = 1. Moreover, as
shown in the previous paragraph, the number of vertices in H′ is equal to v ≡ −1
mod 3, and each edge T |W contains eT ≡ 1 or 0 mod 3 vertices. Thus, H′ is a
pairwise balanced design on v ≡ −1 mod 3 vertices such that any edge E of H′
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has |E| ∈ K ′ := (1 + 3N) ∪ 3N. Now β(K ′) := gcd{k(k − 1) : k ∈ K ′} = 6, but
v(v − 1) ≡ −1 mod 3, so that v(v − 1) 6≡ 0 mod 6. This contradicts Theorem
3.3, completing the proof. �

7. Concluding remarks

Let G ∼= Z/nZ and let S ∈ F(G) be a sequence of terms from G. In the scope
of the standard Gao constant problem, it is clear that 0 can be written as the
sum of n elements of S if it can be written similarly with n elements of S − x,
for any x ∈ G. We may ask the following question: what is the least integer `(n)
such that, if |S| ≥ `(n), then

0 ∈ Σn(U2
G(S)) implies 0 ∈ Σn(U2

G(S − x)) for all x ∈ G?

Let S = s1 · . . . · s` be a sequence of EU2
G

(G)−1 terms such that 0 6∈ Σn(U2
G(S)).

Then
n∑
x=1

|(S + x)UG | =
∑̀
i=1

n∑
x=1

gcd(si+x,n)=1

1 = |S|ϕ(n), (50)

where ϕ denotes the Euler totient function. Hence there exists some x such that
|(S + x)UG | ≥ ϕ(n)|S|/n > ϕ(n). For n large enough, we get |(S + x)G\pG| ≥ 4

for any prime p | n, whence Lemma 4.3 gives 0 ∈ Z/nZ = Σn(U2
G(S + x)) when

gcd(n, 6) = 1. It follows that the integer `(n) defined above is equal to EU2
G

(G)
in this case.
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