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Abstract

An n-set partition of a sequence S is a collection of n nonempty subsequences of S, pairwise

disjoint as sequences, such that every term of S belongs to exactly one of the subsequences,

and the terms in each subsequence are all distinct so that they can be considered as sets. For

a sequence S, subsequence S′ and set T , then |T ∩ S| denotes the number of terms x of S with

x ∈ T , and |S| denotes the length of S, and S \ S′ denotes the subsequence of S obtained by

deleting all terms in S′. We first prove the following two additive number theory results.

(1) Let S be a finite sequence of elements from an abelian group G. If S has an n-set

partition, A = A1, . . . , An, such that

|
n∑
i=1

Ai| ≥
n∑
i=1

|Ai| − n+ 1,

then there exists a subsequence S′ of S, with length |S′| ≤ max{|S|−n+1, 2n}, and with an n-set

partition, A′ = A′1, . . . , A
′
n, such that |

n∑
i=1

A′i| ≥
n∑
i=1

|Ai| − n+ 1. Furthermore, if ||Ai| − |Aj || ≤ 1

for all i and j, or if |Ai| ≥ 3 for all i, then A′i ⊆ Ai.

(2) Let S be a sequence of elements from a finite abelian group G of order m, and suppose

there exist a, b ∈ G such that |(G \ {a, b}) ∩ S| ≤ bm2 c. If |S| ≥ 2m − 1, then there exists an

m-term zero-sum subsequence S′ of S with |{a} ∩ S′| ≥ bm2 c or |{b} ∩ S′| ≥ bm2 c.

Let H be a connected, finite m-uniform hypergraph, and let f(H) (let fzs(H)) be the least

integer n such that for every 2-coloring (coloring with the elements of the cyclic group Zm) of the

vertices of the complete m-uniform hypergraph Kmn , there exists a subhypergraph K isomorphic

to H such that every edge in K is monochromatic (such that for every edge e in K the sum of the

colors on e is zero). As a corollary to the above theorems, we show that if every subhypergraph

H′ of H contains an edge with at least half of its vertices monovalent in H′, or if H consists of

two intersecting edges, then fzs(H) = f(H). This extends the Erdős-Ginzburg-Ziv Theorem,

which is the case when H is a single edge.
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1 Introduction

Let (G, +, 0) be an abelian group. If A, B ⊆ G, then their sumset, A + B, is the set of

all possible pairwise sums, i.e. {a + b | a ∈ A, b ∈ B}. If S is a sequence of elements from G,

then an n-set partition of S is a collection of n nonempty subsequences of S, pairwise disjoint

as sequences, such that every term of S belongs to exactly one of the subsequences, and the

terms in each subsequence are all distinct. Thus such subsequences can be considered as sets. A

sequence is zero-sum if the sum of its terms is zero. For a sequence S and set T , we use |T ∩ S|

to denote the number of terms x of S with x ∈ T . Also, |S| denotes the cardinality of S, if S is

a set, and the length of S, if S is a sequence. If S′ is a subsequence of S, then S \ S′ denotes

the subsequence of S obtained by deleting all terms in S′.

Let H be an m-uniform hypergraph. Then the vertex set of H is denoted V (H), and its

edge set is denoted E(H). If ∆ : V (H) → Zm is a vertex coloring of H by the cyclic group of

order m, then H is edgewise zero-sum if every e ∈ E(H) satisfies
∑
v∈e

∆(v) = 0. A monovalent

vertex is a vertex contained in precisely one edge. Finally, let Kmn be the complete m-uniform

hypergraph on n vertices.

We begin with the Erdős-Ginzburg-Ziv theorem [8] [1] [20].

Erdős-Ginzburg-Ziv Theorem (EGZ). Let G be an abelian group of order m, and let S be a

sequence of elements from G. If |S| ≥ 2m−1, then S contains an m-term zero-sum subsequence.

Observe that if S is a sequence of 0’s and 1’s from the cyclic group Zm, then the m-term

monochromatic subsequences of S correspond exactly with the m-term zero-sum subsequences.

Thus the Erdős-Ginzburg-Ziv Theorem can be thought of as a generalization of the pigeonhole

principle for m pigeons and 2 holes. This has allowed several Ramsey-type questions to be

generalized by replacing colorings using two elements with colorings using the elements from

Zm, and looking for zero-sum substructures rather than monochromatic ones. If m is chosen

to be the size of the particular substructure in question, then the zero-sum Ramsey number

always gives an upper bound on the monochromatic Ramsey number. However, in many cases,

the two numbers are in fact equal. Such problems are said to zero-sum generalize. Examples

include questions that involve looking for a single zero-sum substructure [9] [21] [4], and those

that involve looking for several, disjoint substructures that are each individually zero-sum [5]

[14]. A survey of related problems can be found in [6]. However, until recently, it was not known

if even the two simplest zero-sum Ramsey questions involving nondisjoint structures—namely

two individually zero-sum m-term subsequences that share exactly one vertex; and two that

share exactly two vertices—would zero-sum generalize. Both these cases were found to zero-

3



sum generalize [2], leaving the question of what other overlapping structures might zero-sum

generalize.

Formalizing the above thoughts in the language of hypergraphs, let f(H) (let fzs(H)) be

the least integer n such that for every 2-coloring (coloring with the elements of Zm) of the

vertices of Kmn , there exists a subhypergraph K isomorphic to H such that every edge e in K is

monochromatic, i.e. has all its vertices of the same color (such that for every edge e in K the

sum of the colors on e is zero). It is clear from the pigeonhole principle that f(H) ≤ 2|V (H)|−1,

with equality holding if H is connected. Under this phrasing, the Erdős-Ginzburg-Ziv Theorem

becomes the statement that if H is a single edge, then fzs(H) = f(H), i.e. H edgewise zero-sum

generalizes.

In this paper, we make the first tentative step towards classifying those hypergraphs that

edgewise zero-sum generalize, by proving the following.

Theorem 1.1. Let H be a connected, finite m-uniform hypergraph. If every subhypergraph H′ of

H contains an edge with at least half of its vertices monovalent in H′, then H edgewise zero-sum

generalizes.

Theorem 1.2. If H is a hypergraph that consists of two intersecting m-sets, then H edgewise

zero-sum generalizes.

As will later be seen in Section 5, there exist m-uniform hypergraphs with every edge having

at least dm2 e − 2 of its vertices monovalent, but which do not edgewise zero-sum generalize.

Hence the bound on the number of monovalent vertices in Theorem 1.1 can be improved at

most by one, after which more refined properties must be sought to determine if H edgewise

zero-sum generalizes.

We will derive Theorems 1.1 and 1.2 as simple corollaries to a recent theorem in [13], referred

to in this paper as Theorem 2.1, and the following two general theorems from additive number

theory, which we prove in Sections 3 and 4, respectively. Theorem 1.3 shows that we can

drain elements out of an n-set partition while leaving the sumset of the set partition relatively

unaffected—an ability that can be quite useful in zero-sum applications as it frees up additional

terms that might not be available for further use otherwise. Theorem 1.4 is a refinement of the

Erdős-Ginzburg-Ziv Theorem that shows in a mostly two color sequence of length 2m−1, there

is a mostly monochromatic m-term zero-sum subsequence. The proof of Theorem 1.3 makes use

of recent machinery [11] for the Kemperman Structure Theorem (KST) for critical pairs (i.e.

pairs of finite subsets (A, B) of an abelian group with |A + B| ≤ |A|+ |B| − 1) [Theorems 5.1

and 3.4 and comments on pp. 81–82, 16], while the proof of Theorem 1.4 makes use of a method

first introduced by Gao and Hamidoune [10].
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Theorem 1.3. Let S be a finite sequence of elements from an abelian group G. If S has an

n-set partition, A = A1, . . . , An, such that

|
n∑
i=1

Ai| ≥
n∑
i=1

|Ai| − n+ 1, (1)

then there exists a subsequence S′ of S, with length |S′| ≤ max{|S|−n+1, 2n}, and with an n-set

partition, A′ = A′1, . . . , A
′
n, such that |

n∑
i=1

A′i| ≥
n∑
i=1

|Ai| −n+ 1. Furthermore, if ||Ai| − |Aj || ≤ 1

for all i and j, or if |Ai| ≥ 3 for all i, then A′i ⊆ Ai.

Theorem 1.4. Let S be a sequence of elements from a finite abelian group G of order m, and

suppose there exist a, b ∈ G such that |(G\{a, b})∩S| ≤ bm2 c. If |S| ≥ 2m−1, then there exists

an m-term zero-sum subsequence S′ of S with |{a} ∩ S′| ≥ bm2 c or |{b} ∩ S′| ≥ bm2 c.

Note that the sequence S = (0, . . . , 0︸ ︷︷ ︸
n

, 1, . . . , 1︸ ︷︷ ︸
n

, 2, . . . , 2︸ ︷︷ ︸
n′

), where n′ ≤ n and G = Zm,

shows that the bound on |S′| in Theorem 1.3 is tight for |S| ≤ 3n. The sequence S =

(0, . . . , 0︸ ︷︷ ︸
m−1

, 1, . . . , 1︸ ︷︷ ︸
m−1

, dm2 e) with G = Zm shows that the lower bound bm2 c in Theorem 1.4 is

also tight, although the theorem likely remains true under a less restrictive condition than

|(G \ {a, b}) ∩ S| ≤ bm2 c.

2 Preliminaries

Let A, B ⊆ G, where G is an abelian group. We denote by νc(A,B) the number of representa-

tions of c = a+ b with a ∈ A and b ∈ B. We denote by ηb(A,B) the number of c ∈ A+ b such

that νc(A,B) = 1. A set A ⊆ G is said to be Ha-periodic, if it is the union of Ha-cosets for some

nontrivial subgroup Ha of G, and otherwise, A is called aperiodic. We say that A is maximally

Ha-periodic, if A is Ha-periodic, and Ha is the maximal subgroup for which A is periodic; in

this case, Ha = {x ∈ G | x+A = A}, and Ha is sometimes referred to as the stabilizer of A. If

A+B is Ha-periodic, then an Ha-hole of A (where the subgroup Ha is usually understood) is an

element α ∈ (A+Ha) \A. We will use φa : G→ G/Ha to denote the natural homomorphism.

We begin by stating Kneser’s Theorem [18] [16] [19] [17] [20] [15]. The case with m prime is

known as the Cauchy-Davenport Theorem [7].

Kneser’s Theorem. Let G be an abelian group, and let A1, A2, . . . , An be a collection of finite,

nonempty subsets of G. If
n∑
i=1

Ai is maximally Ha-periodic, then∣∣∣∣∣
n∑
i=1

φa(Ai)

∣∣∣∣∣ ≥
n∑
i=1

|φa(Ai)| − n+ 1,

and otherwise the above inequality holds with φa the identity.
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Note that if A is maximally Ha-periodic, then φa(A) is aperiodic. Also, observe that if A+B

is maximally Ha-periodic and ρ = |A+Ha| − |A|+ |B +Ha| − |B| is the number of holes in A

and B, then Kneser’s Theorem implies |A+ B| ≥ |A|+ |B| − |Ha|+ ρ. Consequently, if either

A or B contains a unique element from some Ha-coset, then |A + B| ≥ |A| + |B| − 1. More

generally, if ρ is the total number of holes in the Ai, then
∣∣∣∣ n∑
i=1

Ai

∣∣∣∣ ≥ n∑
i=1

|Ai| − (n − 1)|Ha| + ρ.

The following is a recent composite analog of the Cauchy-Davenport Theorem [13] [12].

Theorem 2.1. Let S be a sequence of elements from an abelian group G of order m with an

n-set partition P = P1, . . . , Pn, and let p be the smallest prime divisor of m. Then either:

(i) there exists an n-set partition A = A1, A2, . . . , An of S such that:

|
n∑
i=1

Ai| ≥ min {m, (n+ 1)p, |S| − n+ 1} ;

furthermore, if n′ ≥ m
p − 1 is an integer such that P has at least n−n′ cardinality one sets and

if |S| ≥ n+ m
p + p− 3, then we may assume there are at least n− n′ cardinality one sets in A,

or

(ii) (a) there exists α ∈ G and a nontrivial proper subgroup Ha of index a such that all but

at most a − 2 terms of S are from the coset α + Ha; and (b) there exists an n-set partition

A1, A2, . . . , An of the subsequence of S consisting of terms from α + Ha such that
n∑
i=1

Ai =

nα+Ha.

The following two simple propositions are often helpful when using n-set partitions, and

proofs can be found in [3]. In [3], Proposition 2.2 was stated only in the case |B| = 1 and r′ = r,

but the proof given there also proves the more general statement given here.

Proposition 2.1. A sequence S has an n-set partition A if and only if the multiplicity of each

element in S is at most n and |S| ≥ n. Furthermore, a sequence S with an n-set partition

has an n-set partition A′ = A1, . . . , An such that ||Ai| − |Aj || ≤ 1 for all i and j satisfying

1 ≤ i ≤ j ≤ n.

Proposition 2.2. Let S be a finite sequence of elements from an abelian group G, let B be

a finite, nonempty subset of G, and let A = A1, . . . , An be an n-set partition of S, where

|B +
n∑
i=1

Ai| − |B| + 1 = r, and max
i
{|B + Ai| − |B| + 1} = s. Furthermore, let a1, . . . , an be a

subsequence of S such that ai ∈ Ai for i = 1, . . . , n, and let r′ be an integer with 1 ≤ r′ ≤ r.

(i) There exists a subsequence S′ of S and an n′-set partition A′ = A′1, . . . , A
′
n′ of S′, which

is a subsequence of the n-set partition A, such that n′ ≤ r− s+ 1 and |B+
n′∑
i=1

A′i| = |B+
n∑
i=1

Ai|.

(ii) There exists a subsequence S′ of S of length at most n + r′ − 1, and an n-set partition

A′ = A′1, . . . , A
′
n of S′, where A′i ⊆ Ai for i = 1, . . . , n, such that |B +

n∑
i=1

A′i| = |B| − 1 + r′.

Furthermore, ai ∈ A′i for i = 1, . . . , n.
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The following lemma was originally used in the proof of Kneser’s Theorem [17] [20] [18].

Kneser Lemma. Let C0 be a finite subset of an abelian group. If C0 = C1 ∪ C2 with Ci 6= C0

(i = 1, 2), then min
i=1,2
{|Ci|+|Hki

|} ≤ |C0|+|Hk0 |, where Hki
is the trivial group if Ci is aperiodic,

and otherwise Hki is the maximal group for which Ci is Hki-periodic (i = 0, 1, 2).

We will also need the following [17].

Theorem 2.2. Let G be a group, and let A, B ⊆ G be finite subsets. If |A+B| = |A|+ |B|−ρ,

then νc(A,B) ≥ ρ for all c ∈ A+B.

Finally, the following elementary result will be used [20].

Theorem 2.3. Let G be a finite abelian group, and let A, B ⊆ G. If |A| + |B| > |G|, then

A+B = G.

3 A Draining Theorem for Set Partitions

Let G be an abelian group, and let Ha be a nontrivial subgroup. If A ⊆ G, then a quasi-periodic

decomposition of A with quasi-period Ha is a partition A = A1 ∪ A0 of A into two disjoint

(each possibly empty) subsets such that A1 is Ha-periodic or empty and A0 is a subset of an

Ha-coset. A set A ⊆ G is quasi-periodic if A has a quasi-periodic decomposition A = A1 ∪ A0

with A1 nonempty. Such a decomposition is reduced if A0 is not quasi-periodic. Quasi-periodic

decompositions play an important role in the KST description of critical pairs. Observe that if

A is finite and has a quasi-periodic decomposition A1 ∪A0, then A has a reduced quasi-periodic

decomposition A′1 ∪ A′0 with A′0 ⊆ A0, and that an arithmetic progressions with difference d

and at most |〈d〉| − 2 terms is an example of a non-quasi-periodic set. A punctured periodic

set, i.e. a set A for which there exists α ∈ G \ A such that A ∪ {α} is maximally H-periodic,

has a reduced quasi-periodic decomposition for each prime order subgroup of H. However,

quasi-periodic decompositions are otherwise canonical, as seen by the following proposition [11].

Proposition 3.1. If A1 ∪ A0 and A′1 ∪ A′0 are both reduced quasi-periodic decompositions of a

subset A of an abelian group G, with A1 maximally H-periodic and A′1 maximally L-periodic,

then either (i) A1 = A′1 and A0 = A′0 or (ii) H ∩ L is trivial, A0 ∩ A′0 = ∅, |H| and |L| are

prime, and there exists α ∈ G \ A such that A0 ∪ {α} is an H-coset, A′0 ∪ {α} is an L-coset,

and A ∪ {α} is (H + L)-periodic.

In the case of n = 2, we have the following versions of Theorem 1.3 [11].

Theorem 3.1. Let G be an abelian group, and let A, B ⊆ G be finite subsets such that |A| ≥ 2,

and |B| ≥ 3. If |A+B| ≥ |A|+ |B| − 1, then either:
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(i) there exists b ∈ B such that |A+ (B \ {b})| ≥ |A|+ |B| − 1, or

(ii) (a) |A+B| = |A|+ |B| − 1, (b) there exists a ∈ A such that A \ {a} is Ha-periodic, and

(c) there exists α ∈ G such that B ⊆ α+Ha.

Theorem 3.2. Let G be an abelian group, and let A, B, C1, . . . , Cr ⊆ G be finite subsets with

|B| ≥ 3. If |A + B| > |A| + |B| − 1, |A + B +
r∑
i=1

Ci| ≥ |A| + |B| +
r∑
i=1

|Ci| − (r + 2) + 1, and

|A +
r∑
i=1

Ci| ≥ |A| +
r∑
i=1

|Ci| − (r + 1) + 1, then there exists b ∈ B such that |A + (B \ {b})| ≥

|A|+ |B| − 1 and |A+ (B \ {b}) +
r∑
i=1

Ci| ≥ |A|+ |B|+
r∑
i=1

|Ci| − (r + 2) + 1.

We note that conclusion (ii) of Theorem 3.1 implies both that |A+ (B \ {b})| ≥ |A|+ |B|− 2

for all b ∈ B, and that |A| > |B|, so that by interchanging the roles of A and B we can be

assured that (i) will hold. We can now begin the proof of Theorem 1.3.

Proof Theorem 1.3. We may assume |S| ≥ 2n + 1 and n ≥ 2, else the theorem is trivial.

We may also assume n ≥ 3, since the n = 2 case follows from Theorem 3.1. Let |S| = sn + r,

where s ≥ 2 and 0 ≤ r < n. If neither of the conditions of the furthermore part of Theorem

1.3 hold, then we may w.l.o.g. assume that A was chosen from all n-set partitions of S that

satisfy (1) so that the cardinality s′ of the minimal cardinality set Ai in A is maximal, and such

that, subject to prior conditions, the number of terms Ai in A with cardinality s′ is minimal.

Re-index so that the cardinalities of the Ai are nondecreasing, and assume that |Ai| ≥ s+ 2 for

i > k2, and that |Ai| ≤ min{2, s− 1} for i < k1.

The remainder of the proof is divided into two cases. The first handles the case when either

all sets Ai have cardinality at least three, or all have cardinality equal to two or three. Under

these conditions, we show in Case 1b that we can inductively remove terms from the sets Ai one

by one unless highly restrictive conditions occur. Under these restrictive conditions, we show in

Case 1a that we can complete the removal of the remaining terms in one swipe. We note that the

complexity of the induction statement in Case 1b arises from the exceptional case in Theorem

3.1, and that without this problem the induction would go through quite smoothly. Finally, Case

2 handles the case when the set-partition A can’t be reduced to one satisfying the conditions

of Case 1. In this case, a similar argument to that of Case 1a works quite simply provided the

Cauchy-Davenport bound does not hold for every subsequence of A. Thus the majority of Case

2 is spent showing that it is quite difficult for a set-partition A to satisfy Cauchy-Davenport

everywhere and not be reducible to a set partition either with a larger minimal cardinality set

or with a fewer number of minimal cardinality sets.

Case 1a: Suppose that k1 = 1, and if s = 2 that k2 = n (note if either of the conditions

8



of the furthermore part of Theorem 1.3 hold, then this will be the case). Further suppose that,

allowing re-indexing, there exists an n-set partition, A′ = A′1, . . . , A
′
n, of a subsequence S′ of S,

and an integer l with 2 ≤ l ≤ n, such that

|
n∑
i=1

A′i| ≥
n∑
i=1

|Ai| − n+ 1, (2)

A′i ⊆ Ai,
l∑
i=1

A′i is maximally Ha-periodic,
l∑
i=1

|A′i| = |A1|+
l∑
i=2

max{2, |Ai|−1}, |A1| = min
i
{|Ai|},

A′i = Ai for i > l, |A′l| ≥ max{2, |Al| − 1},

|
l−1∑
i=1

A′i| ≥
l−1∑
i=1

|Ai| − (l − 1) + 1, (3)

and

|
l∑
i=1

A′i| <
l∑
i=1

|Ai| − l + 1. (4)

Let b be the integer such that

b|Ha| <
n∑
i=1

|Ai| − n+ 1 ≤ (b+ 1)|Ha|, (5)

let ρ be the integer such that

|
l∑
i=1

A′i| = |
l−1∑
i=1

A′i|+ |A′l| − 1− ρ, (6)

let s2 =
n∑

i=l+1

|Ai|, let s1 =
l∑
i=1

|Ai|, and let s′1 =
l∑
i=1

|A′i|.

Since |A′l| ≥ |Al| − 1 and since A′l ⊆ Al, then in view (3), (4) and (6), it follows that

0 ≤ ρ ≤ |Al| − 1. Furthermore, in view of Theorem 2.2, it follows that there exists a proper

subset T ⊆ A′l of cardinality ρ such that
l−1∑
i=1

A′i + (A′l \ T ) =
l∑
i=1

A′i.

Let S′′ be a minimal length subsequence of the terms of S′ partitioned by the A′i = Ai where

i ≥ l+ 1, with an (n− l)-set partition, B′ = B1, . . . , Bn−l, such that |
l∑
i=1

φa(A′i) +
n−l∑
i=1

φa(Bi)| ≥

b+1 and Bi ⊆ Ai+l (since
l∑
i=1

A′i is Ha-periodic, such a subsequence exists by (2) and (5)). Since

l∑
i=1

|A′i| = |A1|+
l∑
i=2

max{2, |Ai| − 1}, since |A1| = min
i
{|Ai|}, since A′i ⊆ Ai, since k1 = 1, since

k2 = n if s = 2, and since
l∑
i=1

A′i is Ha-periodic, it follows in view of (5) and the conclusion of

the last paragraph that the proof will be complete unless

s2 − s′2 ≤ n− l − 1− ρ, (7)

where s′2 = |S′′|. Hence l < n. From the minimality of S′′ it follows that |Bj | = |φa(Bj)|, and

furthermore, for x ∈ Bj with |Bj | ≥ 2, that

ηφa(x)

(
l∑
i=1

φa(A′i) +
j−1∑
i=1

φa(Bi), φa(Bj)

)
≥ 1. (8)
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Hence, since A′i ⊆ Ai, since
l∑
i=1

A′i is Ha-periodic, and since |A′l| ≥ |Al| − 1, it follows, in view

of (8), (3), (6) and (5), that we can remove an element from S′′ contained in the set Bj with

greatest index such that |Bj | ≥ 2 (since k1 = 1 and A′i ⊆ Ai, such a set exists in view of (7))

and contradict the minimality of S′′ unless

(s′2 − (n− l)− 1)|Ha| ≤ s2 − (n− l) + ρ. (9)

Using the estimate |Ha| ≥ 2, it follows from (9) that

s′2 ≤ (s2 − s′2) + ρ+ (n− l) + 2. (10)

However, (10) and (7) imply that

s′2 ≤ 2(n− l) + 1. (11)

Hence the proof is complete unless ρ = 0 and equality holds in (11), which can only occur if

|Ha| = 2.

If |A′l| ≥ 3, then since ρ = 0, and since
l∑
i=1

A′i is maximally Ha-periodic, it follows from

(6), Proposition 3.1 and Theorem 3.1 that either we can remove an additional element from

A′l leaving the sumset unchanged, whence the proof is complete, or else A′l is maximally Ha′ -

periodic with Ha′ ≤ Ha, whence since |Ha| = 2 it follows that A′l is maximally Ha-periodic. If

|A′l| = 2, then since ρ = 0, and since
l∑
i=1

A′i is maximally Ha-periodic, it follows from (6) and

Kneser’s Theorem that |φa(A′l)| = 1, whence since |Ha| = 2 it follows that A′l is Ha-periodic.

Thus regardless of the cardinality of A′l we may assume A′l is Ha-periodic. Hence it follows that

there does not exist a set A′j with j < l and |φa(A′j)| < |A′j |, since otherwise we can remove

an additional element from A′j leaving the sumset unchanged and completing the proof. Hence,

since
l∑
i=1

A′i is maximally Ha-periodic, and since |Ha| = 2, it follows in view of Kneser’s Theorem

and (4) that s1− l ≥ |
l∑
i=1

A′i| ≥ 2(s′1− l+ 1− |A′l|) + |A′l|. Since A′i ⊆ Ai, since k1 = 1, and since

s′1 =
l∑
i=1

|A′i| = |A1|+
l∑
i=2

max{2, |Ai| − 1}, it follows that

s1 ≤ s′1 + l − 1. (12)

Hence, since s1 − l ≥ 2(s′1 − l + 1 − |A′l|) + |A′l|, it follows that s′1 ≤ 2l − 3 + |A′l|. Hence, if

|A′l| = 2, then in view of (11) it follows that the proof is complete. So we may assume |A′l| > 2.

Thus, since A′l is Ha-periodic, and since |Ha| = 2, it follows that |A′l| ≥ 4. Hence, since k2 = n

if s = 2, and since A′l ⊆ Al, it follows that s ≥ 3. Since s′1 ≤ 2l − 3 + |A′l|, it follows that
l−1∑
i=1

|A′i| ≤ 2(l − 1) − 1. Consequently, since s ≥ 3, since k1 = 1, and since A′i ⊆ Ai, it follows

that s1 ≥ s′1 + l, a contradiction to (12).
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Case 1b: Suppose that k1 = 1, and if s = 2 that k2 = n. We proceed by induction on

a parameter l, with 1 ≤ l ≤ n, as follows. Inductively assume, passing from l − 1 to l, that

(allowing re-indexing) we can remove elements from the sets Ai with i ≤ l − 1, yielding new,

nonempty sets A′i, such that
l−1∑
i=1

|A′i| = |A1|+
l−1∑
i=2

max{2, |Ai| − 1}, such that |A1| = min
i
{|Ai|},

such that (2) and (3) hold with A′i = Ai for i > l−1, and such that |A′l−1| ≥ max{2, |Al−1|−1};

furthermore, if l − 1 > 1, if equality holds in (3), if

l−1∑
i=1

A′i = H ∪ {b}, (13)

where H is maximally Ha-periodic and b /∈ H, and if |Ha| > 2, then

|
(l−1)−1∑
i=1

A′i| ≥
(l−1)−1∑
i=1

|Ai| − ((l − 1)− 1) + ε, (14)

where ε = 0 if |A′l−1| > 3 and |A′l−1| = |Al−1|, and ε = 1 if |A′l−1| ≤ 3 or |A′l−1| = |Al−1| − 1.

The case l = 1 is trivial. Note also that the l = n case completes the proof, so that Case 1 will

be complete once the induction is completed. Further note that (3) with parameter l−1 implies

(14) with parameter l (in place of (l − 1)).

Suppose there exists a set Ar with r > l− 1 such that |
l−1∑
i=1

A′i +Ar| <
l−1∑
i=1

|Ai|+ |Ar| − l+ 1.

Hence from (3) it follows that |
l−1∑
i=1

A′i +Ar| < |
l−1∑
i=1

A′i|+ |Ar| − 1, whence from Kneser’s Theorem

it follows that
l−1∑
i=1

A′i + Ar is maximally Ha-periodic, and from Theorem 2.2 it follows (for

|Ar| ≥ 3) that we can remove some element x from Ar to yield a new set A′r, such that
l−1∑
i=1

A′i + Ar =
l−1∑
i=1

A′i + A′r. Hence, after re-indexing, the conditions of Case 1a are met, and so

we may assume |
l−1∑
i=1

A′i + Ar| ≥
l−1∑
i=1

|Ai| + |Ar| − l + 1. Consequently, we may assume |Ar| > 2

for r > l − 1, else the induction is complete.

Suppose there exists a set Ar with r > l − 1 such that |
l−1∑
i=1

A′i + Ar| < |
l−1∑
i=1

A′i| + |Ar| − 1.

Then from Theorem 2.2 it follows that we can remove some element x from Ar to yield a new

set A′r such that
l−1∑
i=1

A′i + Ar =
l−1∑
i=1

A′i + A′r. If |
l−1∑
i=1

A′i + Ar| ≥
l−1∑
i=1

|Ai| + |Ar| − l + 1, then the

induction is complete, and otherwise we reduce to the conditions of the previous paragraph. So

we may assume that |
l−1∑
i=1

A′i +Ar| ≥ |
l−1∑
i=1

A′i|+ |Ar| − 1 for all r > l − 1.

Suppose that the inequality in (3) is strict. Suppose further that |
l−1∑
i=1

A′i+
n∑

i=l+1

Ai| < |
l−1∑
i=1

A′i|+
n∑

i=l+1

|Ai| − (n − l + 1) + 1. Hence in view of Theorem 2.2 it follows that there exists a set Ar

with r ≥ l+1 such that
l−1∑
i=1

A′i+
n∑

i=l+1

Ai =
l−1∑
i=1

A′i+
n∑

i=l+1
i 6=r

Ai+(Ar \{x}) for all x ∈ Ar. In view of
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Theorem 3.1 and the conclusion of the last paragraph, it follows that there exists x ∈ Ar such

that |
l−1∑
i=1

A′i + (Ar \ {x})| ≥ |
l−1∑
i=1

A′i| + |Ar| − 2. Hence since the inequality in (3) is strict, and

since
l−1∑
i=1

A′i +
n∑

i=l+1

Ai =
l−1∑
i=1

A′i +
n∑

i=l+1
i6=r

Ai + (Ar \ {x}), it follows that the induction is complete

letting A′l = Ar \{x}. So we may assume |
l−1∑
i=1

A′i+
n∑

i=l+1

Ai| ≥ |
l−1∑
i=1

A′i|+
n∑

i=l+1

|Ai|− (n− l+1)+1.

Since the inequality in (3) is strict, and in view of the conclusion of the third paragraph of

Case 1b (with r = l), then it follows from Theorem 2.2 that |
l−1∑
i=1

A′i+(Al \{x})| ≥
l∑
i=1

|Ai|− l+1,

for all but at most one (say x0) x ∈ Al. Hence the induction is complete letting A′l = Al \ {x},

with x ∈ Al and x 6= x0, unless |
l−1∑
i=1

A′i + (Al \ {x}) +
n∑

i=l+1

Ai| <
n∑
i=1

|Ai| − n + 1. Hence,

in view of strict inequality in (3) and the conclusion of the last paragraph, it follows that

|
l−1∑
i=1

A′i + (Al \ {x}) +
n∑

i=l+1

Ai| < |
l−1∑
i=1

A′i +
n∑

i=l+1

Ai|+ |(Al \ {x})| − 1, whence in view of Theorem

2.2 it follows that the induction is complete by letting A′l = Al \ {x′} for any x′ ∈ Al \ {x, x0}.

So (since |Al| ≥ 3) we may assume that equality holds in (3).

Suppose there exists a set Ar with r > l − 1 such that |
l−1∑
i=1

A′i + Ar| = |
l−1∑
i=1

A′i| + |Ar| − 1.

Hence, since |A′1| ≤ |A1| ≤ |Ar|, and since |Ar| ≥ 3, then from Theorem 3.1 it follows that either

the induction is complete or else (13) holds with |Ha| > 2, Ar ⊆ α + Ha for some α ∈ G, and

l > 2. Hence, since equality holds in (3), it follows by inductive assumption that (14) holds.

Hence, since equality holds in (3), and since |A′l−1| ≥ |Al−1| − 1, it follows that there exists a

subset H ′ ⊂ H∪{b} with cardinality at most |A′l−1|+1−ε, such that
l−2∑
i=1

A′i = β+(H∪{b})\H ′,

for some β ∈ G.

Suppose |Ha| > |A′l−1|+2−ε. Hence, since H is Ha-periodic, and since |H ′| ≤ |A′l−1|+1−ε,

it follows that if an Ha-coset γ + Ha contains at least two elements of
l−1∑
i=1

A′i = H ∪ {b},

then the Ha-coset (β + γ) + Ha will contain at least two elements of
l−2∑
i=1

A′i. Hence, since

|A′l−1| ≥ 2, it follows from (13) that |φa(A′l−1)| > 1 and that b /∈ H ′, since if the contrary

holds in either case, then H ∪ {b} will contain at least two elements from every Ha-coset that

intersects H ∪ {b}, a contradiction. Hence from the conclusions of the last two sentences it

follows that φa(
l−2∑
i=1

A′i) = φa(
l−1∑
i=1

A′i), whence since |φa(A′l−1)| > 1, it follows in view of Theorem

2.2 applied modulo Ha that νφa(b)(
l−2∑
i=1

φa(A′i), φa(A′l−1)) ≥ 2. Hence there are two elements

(say) c, d ∈
l−2∑
i=1

A′i, that are distinct modulo Ha, and each of which can be summed with some

element of A′l−1 to give us an element from the coset b + Ha. Consequently, if the coset class

represented by c has at least x elements contained in
l−2∑
i=1

A′i, then any coset class of b must also
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contain at least x elements in
l−1∑
i=1

A′i. Likewise for d. However, by (13) we know that b is the

unique element from its Ha-coset in
l−1∑
i=1

A′i, and thus by the previous two sentences both c and d

must be the unique element from their coset class in
l−2∑
i=1

A′i. However, it follows from the second

sentence of this paragraph that if a coset class contained at least two elements in
l−1∑
i=1

A′i, then the

corresponding (up to translation) coset class of
l−2∑
i=1

A′i must also contain at least two elements.

Since this is not the case for the two distinct coset classes c and d, it follows that there must

be two distinct coset classes with a unique element in
l−1∑
i=1

A′i, which contradicts (13). So we may

assume |Ha| ≤ |A′l−1|+ 2− ε.

Hence, since |Ar| ≥ 3 and since Ar is a subset of an Ha-coset, it follows that

3 ≤ |Ar| ≤ |Ha| ≤ |A′l−1|+ 2− ε. (15)

Let x ∈ A′l−1. If
l−2∑
i=1

A′i + (A′l−1 \ {x}) =
l−2∑
i=1

A′i + A′l−1, then the induction will be complete by

letting A′l−1 = A′l−1 \ {x} and letting A′l = Ar. Hence ηx(
l−2∑
i=1

A′i, A
′
l−1) ≥ 1 for all x ∈ A′l−1.

Suppose ηxi
(
l−2∑
i=1

A′i, A
′
l−1) = 1 holds for at least two distinct x1, x2 ∈ A′l−1. Hence for one of

these xi, say x1, it follows from (13) that∣∣∣∣∣φa
(
l−2∑
i=1

A′i + (A′l−1 \ {x1})

)∣∣∣∣∣ =

∣∣∣∣∣φa
(
l−1∑
i=1

A′i

)∣∣∣∣∣ , (16)

whence, since |Ar| ≥ 3, since Ar is a subset of an Ha-coset, and since ηx1(
l−2∑
i=1

A′i, A
′
l−1) = 1, it

follows from (13) and from Theorem 2.3 that
l−2∑
i=1

A′i + (A′l−1 \ {x1}) +Ar =
l−1∑
i=1

A′i +Ar, whence

the induction is complete for |Ar| > 3 by letting A′l−1 = A′l−1 \ {x1} and letting A′l = Ar.

So assume |Ar| = 3. Hence, since Ar is a subset of an Ha-coset, it follows in view of (13)

and (16) that
(
l−2∑
i=1

A′i + (A′l−1 \ {x1})
)

+ Ar has a quasi-periodic decomposition B1 ∪ B0 with

|B0| = 3. Hence, in view of Proposition 3.1, it follows that
(
l−2∑
i=1

A′i + (A′l−1 \ {x1})
)

+Ar cannot

have a reduced quasi-periodic decomposition B′1 ∪ B′0 where |B′0| = 1 and B′1 is maximally

Ha′ -periodic with |Ha′ | > 2, since if that were the case, then from the comments from the

beginning of Section 3, it would follow from the uniqueness of B′1 ∪ B′0 that B′0 ⊆ B0 and that

B0 \B′0 was Ha′-periodic, contradicting that |B0 \B′0| = 2 < |Ha′ |. Hence (13) cannot hold for(
l−2∑
i=1

A′i + (A′l−1 \ {x1})
)

+Ar with |Ha| > 2. Thus, since
l−2∑
i=1

A′i+(A′l−1\{x1})+Ar =
l−1∑
i=1

A′i+Ar,

it follows that the induction will be complete by letting A′l−1 = A′l−1 \{x1} and letting A′l = Ar.

So we may assume that ηx(
l−2∑
i=1

A′i, A
′
l−1) ≥ 2 for all but at most one x ∈ A′l−1.
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Hence from (14) it follows that

|
l−1∑
i=1

A′i| ≥
l−2∑
i=1

|Ai| − (l − 2) + ε+ 2(|A′l−1| − 1), (17)

which, from the definition of ε, and since |A′l−1| ≥ max{2, |Al−1| − 1}, contradicts that equality

holds in (3) unless |A′l−1| = 2 and equality holds in (17), whence it follows that ηxi
(
l−2∑
i=1

A′i, A
′
l−1) ≤

2 for both x1, x2 ∈ A′l−1. Since |A′l−1| = 2, implying ε = 1 by induction hypothesis, it follows

in view of (15) that |Ha| = 3. Hence, since |A′l−1| = 2, since ηxi
(
l−2∑
i=1

A′i, A
′
l−1) ≤ 2, and in

view of (13), it follows for at least one of x1 and x2, say x1, that (16) holds. Hence, since

Ar is a subset of an Ha-coset, since |Ar| ≥ 3, and since |Ha| = 3, it follows that Ar is an

Ha-coset, that
l−1∑
i=1

A′i + Ar =
l−2∑
i=1

A′i + (A′l−1 \ {x1}) + Ar, and that
l−2∑
i=1

A′i + (A′l−1 \ {x1}) + Ar

is Ha-periodic. Hence, since in view of Proposition 3.1 the compliment of puncture periodic

set is aperiodic, it follows that (13) cannot hold for
l−2∑
i=1

A′i + (A′l−1 \ {x1}) + Ar, whence the

induction is complete by letting A′l−1 = A′l−1 \ {x1} and letting A′l = Ar. So we may assume

that |
l−1∑
i=1

A′i +Ar| 6= |
l−1∑
i=1

A′i|+ |Ar| − 1 for all r > l − 1.

Hence, in view of the conclusion of the third paragraph of Case 1b, it follows that every set

Ar with r > l − 1 satisfies

|
l−1∑
i=1

A′i +Ar| > |
l−1∑
i=1

A′i|+ |Ar| − 1. (18)

Let B1, . . . , Bl′ be a nonempty subsequence of Al, . . . , An. If

|
l−1∑
i=1

A′i +
l′∑
i=1

Bi| ≤ |
l−1∑
i=1

A′i|+
l′∑
i=1

|Bi| − (l′ + 1) + 1, (19)

then, in view of (18) and Theorem 2.2, it follows that there exists a set Bw such that
l−1∑
i=1

A′i +

l′∑
i=1
i 6=w

Bi + (Bw \ {x}) =
l−1∑
i=1

A′i +
l′∑
i=l

Bi, for every x ∈ Bw. Hence from (18) and Theorem 3.1 it

follows that an x ∈ Bw can be found so that the induction is complete by letting A′l = Bw \{x}.

So we may assume for any l′ that (19) does not hold. Hence, since |Al| ≥ 3, then in view of (18),

it follows that the induction is complete by applying Theorem 3.2 with A =
l−1∑
i=l

A′i, B = Al, and

Ci = Al+i.

Case 2: If s 6= 2, then suppose k1 6= 1, and if s = 2, then suppose k1 6= 1 or k2 6= n. Let s′

be the minimal cardinality of a set Ai. Note from the assumptions of the case that s′ ≤ 2. Let

k ≤ n be the index such that |Ai| ≥ s′ + 2 for i ≥ k. Let Aj′ be a subset with |Aj′ | = s′. Note,

for j ≥ k and for every t ∈ Aj \Aj′ , that we can remove t from Aj and place t in Aj′ to form a
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new set A′j′ with |A′j′ | > |Aj′ |. Hence

ηt(
l∑
i=1

Abi
, Aj) ≥ 1, (20)

where A′ = (Ab1 , . . . , Abl
) is any nonempty subsequence of A = (A1, . . . , An) that does not

include the term Aj , since otherwise

|
n∑
i=1
i 6=j,j′

Ai + (Aj′ ∪ {t}) + (Aj \ {t})| ≥
n∑
i=1

|Ai| − n+ 1, (21)

contradicting the extremal assumptions originally assumed for A. From (20) and Theorem 2.2

it follows that

|
l∑
i=1

Abi + (Aj \A′j)| ≥ |
l∑
i=1

Abi |+ |(Aj \A′j)| − 1, (22)

where A′ = (Ab1 , . . . , Abl
) is any nonempty subsequence of A = (A1, . . . , An) that does not

include the term Aj , and A′j is a proper subset of Aj \Aj′ .

Suppose that

|
l∑
i=1

Abi | ≥
l∑
i=1

|Abi | − l + 1, (23)

for every nonempty subsequence A′ = (Ab1 , . . . , Abl
) of A = (A1, . . . , An). Since |Aj |−|Aj′ | ≥ 2,

then in view of (23) and (22) with A′j = {t} and A′ = A \ (Aj), it follows that (21) holds, a

contradiction to the extremal assumptions originally assumed for A, unless equality holds in

(23) and (22) with A′j = {t} and A′ = A \ (Aj), and

|
n∑
i=1
i6=j

Ai + (Aj \ {t})| =
n∑
i=1

|Ai| − n, (24)

for each t ∈ Aj \ Aj′ . However, since (21) cannot hold, then in view of Kneser’s Theorem

and (24), it follows that
n∑
i=1
i 6=j

Ai + (Aj \ {t}) =
n∑
i=1
i6=j,j′

Ai + (Aj \ {t}) + (Aj′ ∪ {t}) is maximally

Hat-periodic. Hence, in view of (20) with A′ = A \ (Aj) it follows that each t ∈ Aj \ Aj′ is the

only element from its Hat
-coset in Aj .

Suppose Aj′ does not contain an element from the same Hat
-coset as t. Thus t is the unique

element from its Hat
-coset in Aj′ ∪ {t}. Hence, since

n∑
i=1
i6=j

Ai + (Aj \ {t}) =
n∑
i=1
i 6=j,j′

Ai + (Aj \

{t}) + (Aj′ ∪ {t}) is maximally Hat
-periodic, and in view of Kneser’s Theorem, it follows that

|
n∑
i=1
i 6=j′,j

Ai+(Aj \{t})+(Aj′ ∪{t})| ≥ |
n∑
i=1
i 6=j′,j

Ai+(Aj \{t})|+ |(Aj′ ∪{t})|−1. Hence from (23) and

(22) with A′j = {t} and A′ = A\(Aj′ , Aj), it follows that (21) holds, a contradiction. So we may
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assume φat
(t) ∈ φat

(Aj′). Thus, since each t ∈ Aj \ Aj′ is the only element from its Hat
-coset

in Aj (from second paragraph of Case 2), it follows that Aj′ * Aj . Hence |Aj \Aj′ | ≥ 3.

Hence in view of (24), (20), (23) and (22) with A′j = {t1, t2} and A′ = A \ (Aj), it follows

that

|
n∑
i=1
i6=j

Ai + (Aj \ {t1, t2})| =
n∑
i=1

|Ai| − n− 1, (25)

for any pair of distinct t1, t2 ∈ Aj \Aj′ . Hence, in view of (24) and (20) with A′ = A \ (Aj), it

follows that ηt(
n∑
i=1
i 6=j

Ai, Aj) = 1 for each t ∈ Aj \Aj′ .

Since
n∑
i=1
i6=j

Ai + (Aj \ {t}) is periodic, it follows that
n∑
i=1

Ai is the disjoint union of that peri-

odic set, say T , and all those elements of
n∑
i=1

Ai that have precisely one representation in the

sumset
n∑
i=1
i 6=j

Ai + Aj and with that one representation using the term t. Since ηt(
n∑
i=1
i6=j

Ai, Aj) = 1,

it follows that there is precisely one such element of
n∑
i=1

Ai, say x, that has precisely one repre-

sentation in the sumset
n∑
i=1
i6=j

Ai + Aj and with that one representation using the term t. Hence

n∑
i=1

Ai = T ∪ {x} is a reduced quasi-periodic decomposition of
n∑
i=1

Ai. Any periodic set has a

reduced quasi-periodic decomposition with the aperiodic part empty, so by the characterization

of reduced quasi-periodic decompositions given by Proposition 3.1, it follows that
n∑
i=1

Ai cannot

both have the reduced quasi-periodic decomposition T ∪{x} as well as a reduced quasi-periodic

decomposition with aperiodic part empty. Thus
n∑
i=1

Ai must be aperiodic.

Next apply the Kneser Lemma with C0 =
n∑
i=1

Ai, C1 =
n∑
i=1
i 6=j

Ai + (Aj \ {t1}), and C2 =

n∑
i=1
i 6=j

Ai + (Aj \ {t2}), where t1 and t2 are an arbitrary pair of distinct elements from Aj \ Aj′ .

Since C0 =
n∑
i=1

Ai is aperiodic (from the previous paragraph), it follows that |Hk0 | = 1 in the

Lemma. Also note by their definitions that Hat1
= Hk1 and Hat2

= Hk2 , in the notation of the

Lemma. Since ηt(
n∑
i=1
i 6=j

Ai, Aj) = 1 for each t ∈ Aj \ Aj′ , including t1 and t2, then it follows that

|C1| = |C2| = |C0| − 1. Hence the inequality given by the Kneser Lemma implies that either

|Hk1 | ≤ 2 or |Hk2 | ≤ 2. Hence, since both Hk1 and Hk2 are nontrivial by their definition, it

follows that either |Hk1 | = 2 or |Hk2 | = 2. If there were two distinct elements t1 and t2 from

Aj \ Aj′ both with |Hk1 | 6= 2 and |Hk2 | 6= 2, then applying the above argument with these two

ti would yield a contradiction. Thus we can assume that |Hat
| = 2 for all but at most one (say
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t0) t ∈ Aj \Aj′ .

Let t ∈ Aj \Aj′ with t 6= t0. Since
n∑
i=1

Ai is aperiodic, it follows that every set Ai is aperiodic.

Since |Hat | = 2, and since
n∑
i=1
i 6=j

Ai + Aj \ {t} is maximally Hat-periodic, then from the remarks

below the statement of Kneser’s Theorem it follows that

|
n∑
i=1
i 6=j

Ai + (Aj \ {t})| =
n∑
i=1
i 6=j

|Ai|+ |Aj \ {t}| − (n− 1)|Hat
|+ ρ =

n∑
i=1

|Ai| − 2n+ 1 + ρ,

where ρ is the number of Hat
-holes contained collectively from the sets Ai, i 6= j, and from

Aj \ {t}. Since each set Ai is aperiodic, it follows that each set Ai, i 6= j, contains at least one

Hat-hole, and thus ρ ≥ n−1, implying |
n∑
i=1
i 6=j

Ai+Aj \{t}| ≥
n∑
i=1

|Ai|−2n+1+(n−1) =
n∑
i=1

|Ai|−n.

However, by (24) we know that equality holds in this inequality, and consequently it follows that

each set Ai, i 6= j, must contain exactly one Hat
-hole, and that Aj \ {t} must contain no Hat

-

holes. Hence each set Ai is a union of an Hat
-periodic set, say T , and a disjoint element, say

x. However, since |Hat
| = 2, then adding the other element (besides x) from the Hat

-coset that

contains x to the set Ai will complete the coset and make the resulting set Hat-periodic. Thus

each Ai is a punctured Hat
-periodic set. Hence, since φat

(t) ∈ φat
(Aj′) (from third paragraph

of Case 2), and since t /∈ Aj′ , it follows that Aj′ ∪ {t} is Hat
-periodic, and that if t′ ∈ Aj \Aj′ ,

t′ 6= t, then φat
(t′) /∈ φat

(Aj′).

Since every set Ai is a punctured Hat-periodic set, and since |Hat | = 2, it follows that |Ai|

is odd for every i ≤ n. Hence, since s′ ≤ 2, it follows that s′ = 1, and that there is no set Ai

with |Ai| = s′ + 1 = 2.

Suppose

|
n∑
i=1
i6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t, t′})| ≤
n∑
i=1

|Ai| − n, (26)

for distinct t, t′ ∈ Aj \Aj′ , t 6= t0. Hence from Kneser’s Theorem, it follows that
n∑
i=1
i 6=j,j′

Ai+ (Aj \

{t, t′}) + (Aj′ ∪ {t, t′}) is maximally Ha′ -periodic.

Suppose the inequality in (26) is strict. Hence, since

n∑
i=1
i 6=j

Ai + (Aj \ {t, t′}) ⊆
n∑
i=1
i 6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t, t′}),

it follows in view of (25) that

n∑
i=1
i6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t, t′}) =
n∑
i=1
i 6=j

Ai + (Aj \ {t, t′}).
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Hence, in view of (25) and (24), it follows that
n∑
i=1
i 6=j,j′

Ai+(Aj\{t, t′})+(Aj′∪{t, t′}) is a punctured

Hat
-periodic set. Thus from Proposition 3.1 it follows that

n∑
i=1
i6=j,j′

Ai+(Aj \{t, t′})+(Aj′ ∪{t, t′})

cannot be periodic, contradicting that
n∑
i=1
i 6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪{t, t′}) is Ha′ -periodic. So

we may assume that equality holds in (26).

Since
n∑
i=1
i6=j

Ai + (Aj \ {t, t′}) ⊆
n∑
i=1
i 6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t}), then in view of (25) it

follows that |
n∑
i=1
i 6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t})| ≥
n∑
i=1

|Ai| − n− 1. Suppose

|
n∑
i=1
i 6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t})| >
n∑
i=1

|Ai| − n− 1.

Hence, since
n∑
i=1
i 6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t}) ⊆
n∑
i=1
i 6=j,j′

Ai + (Aj \ {t}) + (Aj′ ∪ {t}), it follows

in view of (24) that

n∑
i=1
i 6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t}) =
n∑
i=1
i 6=j,j′

Ai + (Aj \ {t}) + (Aj′ ∪ {t}) =
n∑
i=1
i 6=j

Ai + (Aj \ {t}).

Hence in view of (26) it follows that

n∑
i=1
i 6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t}) =
n∑
i=1
i 6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t, t′})

is maximally Hat
-periodic. Hence, since φat

(t′) /∈ φat
(Aj′) (from seventh paragraph of Case 2),

since t is the only element from its Hat -coset in Aj (from second paragraph of Case 2), since

|Hat | = 2, and since each Ai is a punctured Hat-coset (from seventh paragraph of Case 2), it

follows from Kneser’s Theorem (by counting holes) that |
n∑
i=1
i 6=j,j′

Ai+(Aj \{t, t′})+(Aj′∪{t, t′})| ≥

n∑
i=1

|Ai|−n+2, contradicting (26). So we may assume that |
n∑
i=1
i 6=j,j′

Ai+(Aj \{t, t′})+(Aj′∪{t})| =

n∑
i=1

|Ai| − n− 1.

Hence, since equality holds in (26), it follows that
n∑
i=1
i6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t}) is

punctured from the Ha′ -periodic set
n∑
i=1
i 6=j,j′

Ai+(Aj \{t, t′})+(Aj′ ∪{t, t′}), and thus is aperiodic

by Proposition 3.1. However, since Aj′ ∪ {t} is Hat
-periodic (from seventh paragraph of Case
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2), it follows that
n∑
i=1
i6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t}) is periodic, a contradiction. So we may

assume (26) does not hold, i.e. that

|
n∑
i=1
i 6=j,j′

Ai + (Aj \ {t, t′}) + (Aj′ ∪ {t, t′})| ≥
n∑
i=1

|Ai| − n+ 1, (27)

for distinct t, t′ ∈ Aj \Aj′ , t 6= t0.

If |Aj | − |Aj′ | > 2, then in view of (27) it follows that the set partition obtained by moving

t and t′ from Aj to Aj′ satisfies (1) and contains one less set of cardinality s′, contradicting the

extremal conditions originally assumed for A. Thus we may assume |Aj | − |Aj′ | = 2. Hence

|Aj | = s′ + 2 = 3. Consequently, since Aj and Aj′ with |Aj | ≥ s′ + 2 and |Aj′ | = s′ were

arbitrary, and since there are no sets Ai with |Ai| = s′+ 1 (from eighth paragraph of Case 2), it

follows that |Ai| = 1 for i < k and that |Ai| = 3 for i ≥ k. Thus s = 2 and hence applying Case

1 to the (n− k+ 1)-set partition Ak, Ak+1, . . . , An completes the proof. So we may assume (23)

does not hold.

Since (23) does not hold, then let l be the minimal integer such that, allowing re-indexing,

|
l∑
i=1

Ai| <
l∑
i=1

|Ai| − l + 1. (28)

Hence from Kneser’s Theorem it follows that
l∑
i=1

Ai is maximally Ha-periodic. Since s′ ≤ 2,

then in view of (20), Theorem 2.2 and the minimality of l, it follows that |Ai| ≤ s′ + 1 ≤ 3

for i ≤ l. Hence, in view of Kneser’s Theorem and the minimality of l, it follows (by counting

holes) that each Ai with i ≤ l is contained in an Ha-coset. Thus, since
l∑
i=1

Ai is Ha-periodic, it

follows that
l∑
i=1

Ai is an Ha-coset. Let b, s1, and s2 be as defined in Case 1a. Since
l∑
i=1

Ai is an

Ha-coset, then in view of Proposition 2.2(ii), it follows that we can remove elements from the

sets in Ai with i ≤ l, yielding new, nonempty sets A′i, such that s′1
def
=

l∑
i=1

|A′1| ≤ |Ha| + l − 1

and
l∑
i=1

A′1 =
l∑
i=1

A1.

Let S′ be a minimal length subsequence of the terms of S partitioned by the Ai where

i ≥ l + 1, with an (n− l)-set partition, B′ = B1, . . . , Bn−l, such that |
n−l∑
i=1

φa(Bi)| ≥ b+ 1 (since

l∑
i=1

A′i is an Ha-coset, such a subsequence exists by (1) and (5)). In view of Proposition 2.2(ii)

it follows that |S′| ≤ (n− l) + b.

Letting s′2 = |S′|, letting r′ = r for s ≥ 3, and letting r′ = n− 1 for s = 2, observe that the

proof will be complete unless

s′2 + s′1 ≥ (s− 1)n+ r′ + 2. (29)
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Hence from the conclusions of the last two paragraphs, it follows that

(s− 1)n+ r′ + 2 ≤ |Ha|+ l − 1 + (n− l) + b,

implying (s−1)n ≤ s−1
s−2 (|Ha|+b−r′−3) ≤ 2(|Ha|+b−r′−3) for s ≥ 3, and that n ≤ |Ha|+b−2

for s = 2. Hence in view of (5), it follows that b|Ha| ≤ 2|Ha|+2b−5, implying (b−2)|Ha| ≤ 2b−5,

whence b ≤ 1. Since |Ai| ≤ s′ + 1 ≤ 3 for i ≤ l, it follows from the minimality of l that |Ai| = 2

or |Ai| = 3 for all i ≤ l. Hence, in view of (28), it follows that applying proposition 2.2(ii) to the

Ai with i ≤ l, yields sets A′i ⊆ Ai such that
l∑
i=1

A′i =
l∑
i=1

Ai, such that |
l∑
i=1

A′i| =
l∑
i=1

|A′i| − l + 1,

such that |A′r| ≤ 2 for some r, and such that the conditions of Case 1 hold for the subsequence

of the A′i consisting of those A′i with |A′i| > 1. Hence, since |A′r| ≤ 2 for some r, then applying

Case 1 it follows that we may assume that s′1 ≤ 2l. Hence, since b ≤ 1, and since s′2 ≤ (n− l)+b,

it follows that s′1 + s′2 ≤ n + l + 1. Thus from (29) it follows that n + l + 1 ≥ 2n + 1, whence

n ≤ l contradicting (1) or (28), and completing the proof.

4 Mostly Monochromatic Zero-Sums

Given α ∈ Zm, let α be the least positive integer representative of α. The proof of Theorem

1.4, which we begin below, follows a method introduced by Gao and Hamidoune [10].

Proof Theorem 1.4. Let |{a} ∩ S| = n0, let |{b} ∩ S| = n1, and let t = |S| − n0 − n1. We

may w.l.o.g. assume |S| = 2m− 1, n1 ≤ n0 ≤ m− 1, and a = 0. Hence, since by hypothesis

t ≤
⌊m

2

⌋
, (30)

it follows that ⌈m
2

⌉
≤ m− t ≤ n1 ≤ n0 ≤ m− 1, (31)

and, in view of the pigeonhole principle, that

m−
⌊
t+ 1

2

⌋
≤ n0. (32)

Let c be the order of b. Suppose first that c < m. Let l be the least integer such that

b t+1
2 c ≤ l and c|l. Observe l ≤ b t+1

2 c + c − 1. Hence, if c < m
3 , then in view of (30) it follows

that l ≤ bm+2
4 c + m

4 − 1 ≤ dm2 e. On the other hand, if c ≥ m
3 , then from (30) it follows that

b t+1
2 c ≤ c, whence l = c ≤ dm2 e. Hence, in view of (31) and (32), it follows in both cases that

the proof is complete by selecting l terms equal to b and m − l terms equal to 0. So we may

assume that c = m, whence G is cyclic and w.l.o.g. b = 1.
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Let W = w1, w2, . . . , wl, be a subsequence of the terms of S not equal to 0 or 1, and let
l∑
i=1

wi = w. Observe that the m-term sequence

(0, . . . , 0︸ ︷︷ ︸
w−l

, 1, . . . , 1︸ ︷︷ ︸
m−w

, w1, . . . , wl)

is zero-sum provided w ≥ l. Hence, in view of (31), it follows that if w ≥ bm2 c+ l, then

w ≥ n0 + l + 1, (33)

and if l ≤ w ≤ dm2 e, then

w ≤ m− n1 − 1, (34)

else the proof is complete.

Let Y = y1, . . . , yry
be the subsequence of S consisting of terms yi such that 1 < yi ≤ m

2 ,

and let Z = z1, . . . , zrz be the subsequence of S consisting of terms zi such that m
2 < zi ≤ m−1.

Applying (33) with W = {zi}, it follows that zi ≥ n0 + 2 for all i. Hence, since m
2 < zi ≤ m− 1,

then in view of (30), (32), and (33) applied to W = z1, . . . , zl−1, it follows from an easy inductive

argument passing from l − 1 to l that bm2 c + l ≤
∑l
i=1 zi for all l ∈ {1, . . . , rz}. Hence, since

m
2 < zi ≤ m− 1, it follows that

∑l
i=1 zi ≤ m− l. Consequently from (33) applied with W = Z,

it follows that

rz ≤
m− n0 − 1

2
. (35)

Let Y ′ = y′1, . . . , y
′
l be a subsequence of Y with length l. We next show by induction on l,

passing from l − 1 to l, that
l∑
i=1

y′i ≤
⌊m

2

⌋
+ l − 1, (36)

for all l ∈ {1, . . . , ry}. The case l = 1 follows from the definition of Y . Since 2m−1 = n0+n1+t,

then applying (34) with W = {yi}, it follows that y′i ≤ t−m+ n0 for all i. Hence by induction

hypothesis it follows that

n0 −
⌈m

2

⌉
+ l − 2 + t ≥

l∑
i=1

y′i. (37)

If (36) does not hold, then applying (33) with W = Y ′, it follows that
∑l
i=1 y

′
i ≥ n0 + l + 1.

Hence from (37) it follow that t ≥ dm2 e + 3, contradicting (30). So we may assume that (36)

holds.

We proceed to show that
l∑
i=1

y′i =
l∑
i=1

y′i. (38)
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Since y′i ≤ m
2 , it follows that (38) holds for l = 1 and l = 2. Assume inductively that (38) holds

up to (l − 1), where l ≥ 3. Letting j, j′ ∈ {1, . . . , l} be arbitrary distinct indices, it follows in

view of (36) and the induction hypothesis that
∑l
i=1 y

′
i

i 6=j
=
∑l
i=1 y

′
i

i6=j
≤ bm2 c+ l − 2. Hence, using

the estimate y′i ≥ 2 for i 6= j′, it follows that

y′j′ ≤
⌊m

2

⌋
− l + 2, (39)

for all j′ ∈ {1, . . . , l}. But then from (39), induction hypothesis and (36), it follows that

l∑
i=1

y′i = y′l +
l−1∑
i=1

y′i = y′l +
l−1∑
i=1

y′i ≤
⌊m

2

⌋
− l + 2 +

⌊m
2

⌋
+ l − 2 = 2

⌊m
2

⌋
≤ m,

from which (38) immediately follows.

In view of (35) and (32), it follows that

ry ≥
3t+ 1

4
. (40)

Let l be the maximal integer for which there exists a subsequence Y ′ = y′1, . . . , y
′
l of Y satisfying∑l

i=1 y
′
i ≤ dm2 e. Hence, since 2m− 1 = n0 + n1 + t, and since yi ≥ 2, it follows, in view of (34)

and (38), that

2l ≤
l∑
i=1

y′i ≤ n0 + t−m. (41)

Hence, since m − n0 ≥ 1, it follows that l ≤ t−1
2 . Hence from (40) it follows that there are

at least d t+3
4 e terms of Y not in the maximal subsequence Y ′. Furthermore, since l ≥ 1,

it follows that t ≥ 3. Let A = a1, . . . , ad(t+3)/4e be a subsequence of Y \ Y ′. Define α by∑l
i=1 y

′
i = n0 + t −m − α. From (41) it follows that α ≥ 0. Hence, in view of the maximality

of Y ′, it follows that y ≥ dm2 e+m− n0 − t+ 1 + α for each y ∈ Y \ Y ′. Hence by considering

lower and upper bounds for
∑
a∈A

a+
∑
y′∈Y

y′, it follows, in view of (36) and (38), that

⌈
t+ 3

4

⌉(⌈m
2

⌉
+m− n0 − t+ 1 + α

)
+ (n0 + t−m− α) ≤

⌊m
2

⌋
+ l +

⌈
t+ 3

4

⌉
− 1.

Hence, since α ≥ 0, since t ≥ 3, since m − n0 ≥ 1, and in view of (30), it follows that if m is

odd, or m − n0 ≥ 2, or t < bm2 c, then the above inequality implies l ≥ t+1
2 , a contradiction to

l ≤ t−1
2 . Hence, in view of (30), we may assume m is even, t = m

2 , and n0 = m− 1. Hence from

(35) it follows that ry = m
2 . Thus from (38) it follows that yi = 2 for all i, whence in view of

(31) the proof is complete by selecting m
2 terms equal to 0 and m

2 terms equal to 2.

22



5 Applications to Erdős-Ginzburg-Ziv

We begin this section first with the following simple proposition, which is easily proved by

induction on s.

Proposition 5.1. Let m and s be positive integers, and let S be a sequence of elements from a

finite group of order m. If |S| ≥ m + 2s − 1, then there exist two disjoint s-term subsequences

of S whose sums are equal.

As a simple corollary to Theorems 2.1, 1.3 and 1.4, we are now ready extend the Erdős-

Ginzburg-Ziv Theorem to a class of hypergraphs.

Theorem 5.1. Let H be a finite m-uniform hypergraph, let e ∈ E(H), and let H′ be the

subhypergraph obtained by removing the edge e and all monovalent vertices contained in e. If

fzs(H′) ≤ 2|V (H′)| − 1 and e has at least dm2 e monovalent vertices, then fzs(H) ≤ 2|V (H)| − 1.

Proof. Let S denote the sequence given by a coloring ∆ : V → Zm, where n = |V (H)| and

V = V (Km
2n−1). Let s be the number of non-monovalent vertices in e. Note that by assumption

s ≤ bm2 c. We may assume the multiplicity of each term in S is at most n− 1, else there will be

an edgewise zero-sum copy of H with all edges monochromatic. Hence, if there exists a subset

X ⊆ V such that |X| ≤ s − 2 ≤ bm2 c − 2 and |∆(V \X)| ≤ 2, then setting aside n −m terms

colored by ai for each of the two ai ∈ ∆(V \ X) and applying Theorem 1.4 to the remaining

2m− 1 terms, it follows that there exists an edge-wise zero-sum copy of H with the vertices of

e colored by the zero-sum sequence given by Theorem 1.4, and all other edges monochromatic.

Otherwise, since s ≤ bm2 c, it follows from Proposition 2.1 that there exists an (2n − m)-set

partition P of S with at least 2n − 2m + s cardinality one sets. Since s ≤ bm2 c, then applying

Theorem 2.1 to P yields two cases.

If Theorem 2.1(i) holds, then let A be the set partition given by (i), and let A′ be the (m−s)-

set partition obtained by deleting 2n−2m+s cardinality one sets from A. Applying Theorem 1.3

to the set partition A′ yields an (m−s)-set partition A′′ that contains at most 2(m−s) terms of

S, and whose sumset is Zm. This leaves at least 2n−1−2(m−s) = 2(n−m+s)−1 ≥ 2|V (H′)|−1

vertices not contained in any term of A′′. Thus, since fzs(H′) ≤ 2|V (H′)| − 1, it follows that

there exists an edge-wise zero-sum copy of H′ not containing any vertices contained in A′′.

Hence, since the sumset of terms in the (m − s)-set partition A′′ is Zm, it follows that we can

find m− s vertices from A′′ which together with the vertices of H′ form an edge-wise zero-sum

copy of H.

If Theorem 2.1(ii) holds, then there exists a proper nontrivial subgroup Ha of index a such

that all but at most a − 2 terms of S are from the coset α + Ha, and w.l.o.g. by translation
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we may assume α = 0; furthermore, there exists a subsequence S′ of S of length at most

2n − 1 − (a − 2) with an (2n −m)-set partition P ′ = P ′1, . . . , P
′
2n−m satisfying

2n−m∑
i=1

P ′i = Ha.

Hence, since m
a ≤ m− s ≤ 2n−m, then by applying Proposition 2.2(i) followed by Proposition

2.2(ii), it follows that there exists a subsequence S′′ of S′ satisfying |S′′| ≤ m− s+ m
a − 1 and

which has an (m − s)-set partition P ′′ the sumset of whose terms is Ha. Hence it follows that

there are at least 2n− 1− (m− s+ m
a − 1)− (a− 2) ≥ 2n− 1− 2(m− s) terms of S that are not

used in the set partition P ′′, and which are from Ha, whence the proof is complete as it was in

the previous paragraph.

We can now prove our main results.

Proof Theorem 1.1. If H has one edge, this is precisely a restatement of the Erdős-Ginzburg-Ziv

Theorem. Hence the upper bound for Theorem 1.1 follows from Theorem 5.1 and induction on

the number of edges (relaxing the connectedness condition), while the lower bound for connected

H is trivial.

Proof Theorem 1.2. Let S denote the sequence given by a coloring ∆ : V → Zm, where

n = |V (H)| and V = V (Km
2n−1). Let the two edges of H be A and B. If |A ∩ B| < dm2 e, then

the proof is complete by Theorem 1.1. So we may assume |A∩B| ≥ dm2 e. Let s = m− |A∩B|.

Note n = m+ s, |S| = 2m+ 2s− 1, and s ≤ bm2 c.

We may also assume the multiplicity of each term in S is at most n − 1, else there will be

an edgewise zero-sum copy of H with all edges monochromatic. Hence, if there exists a subset

X ⊆ V such that |X| ≤ dm2 e − 2 and |∆(V \X)| ≤ 2, then setting aside s terms colored by ai

for each of the two ai ∈ ∆(V \X) and applying Theorem 1.4 to the remaining 2m− 1 terms, it

follows that there exists an edge-wise zero-sum copy of H with the vertices of A colored by the

zero-sum sequence given by Theorem 1.4, and with V (H) \ (A∩B) monochromatic. Otherwise,

it follows from Proposition 2.1 that there exists an (m + 2s)-set partition P of S with at least

dm2 e+ 2s cardinality one sets. Applying Theorem 2.1 to P yields two cases.

If Theorem 2.1(i) holds, then let A be the set partition given by (i), and let A′ be the bm2 c-set

partition obtained by deleting dm2 e+ 2s cardinality one sets from A. Applying Theorem 1.3 to

the set partition A′ yields an bm2 c-set partition A′′ that contains at most m terms of S, and

whose sumset is Zm. This leaves at least m+ 2s− 1 vertices not contained in any term of A′′.

Hence from Proposition 5.1 it follows that there are two disjoint s-term subsequences S1 and S2,

none of whose terms are contained in a term of A′′, and whose sums are equal to (say) t. Since

s ≤ bm2 c, then let T be a subsequence of length m− s− bm2 c whose terms are not contained in
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S1, S2, nor any term of A′′. Let t′ be the sum of the terms in T , if T is nonempty, and otherwise

let t′ = 0. Since s ≤ bm2 c, and since the sumset of A′′ is Zm, it follows that we may choose bm2 c

terms of S from A′′ whose sum is −(t+ t′), which along with S1, S2 and T yields an edgewise

zero-sum copy of H with the terms from A′′ and T contained in A ∩B.

If Theorem 2.1(ii) holds, then there exists a proper nontrivial subgroup Ha of index a such

that all but at most a − 2 terms of S are from the coset α + Ha, and w.l.o.g. by transla-

tion we may assume α = 0; furthermore, there exists a subsequence S′ of S of length at most

2n − 1 − (a − 2) with an (m + 2s)-set partition P ′ = P ′1, . . . , P
′
m+2s satisfying

m+2s∑
i=1

P ′i = Ha.

Hence, since m
a ≤ m− s ≤ m+ 2s, then by applying Proposition 2.2(i) followed by Proposition

2.2(ii), it follows that there exists a subsequence S′′ of S′ satisfying |S′′| ≤ m− s+ m
a − 1 and

which has an (m − s)-set partition P ′′ the sumset of whose terms is Ha. Hence it follows that

there are at least 2m+ 2s− 1− (a− 2)− (m− s+ m
a − 1) = m+ 3s− m

a − a+ 2 ≥ m
a + 2s− 1

terms of S that are not used in the set partition P ′′, and which are from Ha, whence the proof

is complete as it was in the previous paragraph.

We conclude by giving an example of a fairly simple hypergraph on (bm2 c + 3)(dm2 e − 1)

vertices with every edge having at least dm2 e − 2 monovalent vertices, but which does not edge-

wise zero-sum generalize, showing that the dm2 e bound given in Theorems 1.1 and 5.1 can be

improved at best to dm2 e − 1. Let X be a set of bm2 c + 3 vertices, and for each bm2 c + 2 sub-

set X ′ of X, define an edge of the hypergraph H to be X ′ along with dm2 e − 2 monovalent

vertices disjoint from X. For the coloring of the complete graph, let ∆ consist entirely of an

equal number of vertices colored by 0 and 1, and one vertex colored by dm2 e. Hence, since

the only non-monochromatic m-term zero-sum sequence is (0, . . . , 0︸ ︷︷ ︸
dm

2 e−1

, 1, . . . , 1︸ ︷︷ ︸
bm

2 c

, dm2 e), it follows

that any edgewise zero-sum copy of H must have |∆(X)| = 3, which, since there can be no

non-monochromatic zero-sum edge using only the colors 0 and 1, is impossible.

As a final remark, we note that the arguments used in this section to obtain upper bounds

for colorings with Zm work equally well for colorings with any abelian group G of order m,

although in the noncyclic case the matching lower bound constructions do not hold.
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