On the Intersection of two m-sets and the Erdős-Ginzburg-Ziv Theorem

Arie Bialostocki∗ and David J. Grynkiewicz†

December 11, 2008

Abstract

We prove the following extension of the Erdős-Ginzburg-Ziv Theorem. Let m be a positive integer. For every sequence $\{a_i\}_{i \in I}$ of elements from the cyclic group \mathbb{Z}_m, where $|I| = 4m - 5$ (where $|I| = 4m - 3$), there exist two subsets $A, B \subseteq I$ such that $|A \cap B| = 2$ (such that $|A \cap B| = 1$), $|A| = |B| = m$, and $\sum_{i \in A} a_i = \sum_{i \in B} b_i = 0$.

1 Introduction

Since the seminal theorem of Erdős-Ginzburg-Ziv (EGZ) [13] [14] [1]—which states that any sequence of $2m - 1$ elements from a finite abelian group of order m contains an m-term subsequence whose terms sum to zero—many generalizations, analogs, related problems [17] [15] [1] [2], and what are known as generalizations in the sense of EGZ for edge colorings of graphs [7] [16] as well as for colorings of the integers [12], were published. Two surveys appeared in [3] [5]. In the early 1990’s, the first author posed the following related conjecture.

Conjecture 1.1. Let m be a positive integer. For every sequence $\{a_i\}_{i \in I}$ of elements from the cyclic group \mathbb{Z}_m, where $|I| = 4m - 5$ (where $|I| = 4m - 3$), there exist two subsets $A, B \subseteq I$ such that $|A \cap B| = 2$ (such that $|A \cap B| = 1$), $|A| = |B| = m$, and $\sum_{i \in A} a_i = \sum_{i \in B} b_i = 0$.

While the case $|A \cap B| = 1$ follows directly from the Cauchy-Davenport Theorem [6] for m prime, there were no tools to attack the case $|A \cap B| = 2$, until recently. The main tool

∗300 Brink Hall, University of Idaho, P.O. Box 441103, Moscow, ID 83844-1103,
†Mathematics 253-37, Caltech, Pasadena, CA 91125
to handle this kind of problem was developed by the second author [10]. It is stated below as
Theorem 2.1. The aim of this note is to affirm the conjecture above. It is worthwhile to note
that a continuation by the second author along similar lines will appear in [9].

2 Preliminaries

Let G denote an abelian group of order m, and let S be a sequence of elements from G. The
length of S is denoted by $|S|$. If $A, B \subseteq G$, then their sumset, $A + B$, is the set of all possible
pairwise sums, i.e. $\{a + b \mid a \in A, b \in B\}$. Furthermore, an n-set partition of S is a sequence
of n nonempty subsequences of S, pairwise disjoint as sequences, such that every term of S
belongs to exactly one subsequence, and the terms in each subsequence are distinct. Thus
such subsequences can be considered sets. Let φ be the function which takes a sequence to its
underlying set, so that if $S = (0, 0, 1, 2, 0, 2, 2)$, then $\varphi(S) = \{0, 1, 2\}$. For $\alpha \in Z_m$, let $\overline{\alpha}$ denote
the least positive integer representative of α. If S' is a subsequence of S, then $S \setminus S'$ denotes
the subsequence of S obtained by deleting the terms of S' in S.

The following [10] [8] [11] is a recent composite analog of the Cauchy-Davenport Theorem
[6].

Theorem 2.1. Let S be a sequence of elements from an abelian group G of order m with an
n-set partition $P = P_1, \ldots, P_n$, and let p be the smallest prime divisor of m. Then either:

(i) there exists an n-set partition $A = A_1, A_2, \ldots, A_n$ of S such that:

$$|\sum_{i=1}^n A_i| \geq \min \{m, (n + 1)p, |S| - n + 1\};$$

Furthermore, if $n' \geq \frac{m}{p} - 1$ is an integer such that P has at least $n - n'$ cardinality one sets and
if $|S| \geq n + \frac{m}{p} + p - 3$, then we may assume there are at least $n - n'$ cardinality one sets in A, or

(ii) (a) there exists $\alpha \in G$ and a nontrivial proper subgroup H_α of index a such that all but
at most $a - 2$ terms of S are from the coset $\alpha + H_\alpha$; and (b) there exists an n-set partition
A_1, A_2, \ldots, A_n of the subsequence of S consisting of terms from $\alpha + H_\alpha$ such that $\sum_{i=1}^n A_i =
na + H_\alpha$.

When using the above theorem, the following basic proposition about n-set partitions is
useful [2].

Proposition 2.1. A sequence S has an n-set partition A if and only if the multiplicity of each
element in S is at most n and $|S| \geq n$. Furthermore, a sequence S with an n-set partition
has an \(n\)-set partition \(A' = A_1, \ldots, A_m\) such that \(||A_i| - |A_j|| \leq 1\) for all \(i\) and \(j\) satisfying \(1 \leq i \leq j \leq n\).

Finally, we need the following theorem which describes the extremal instances for EGZ [4].

Theorem 2.2. Let \(S\) be a sequence of elements from \(\mathbb{Z}_m\). If \(|S| = 2m - 2\) and \(S\) contains no \(m\)-term zero-sum subsequence, then \(S\) contains two distinct residues, whose difference is coprime to \(m\), each with multiplicity \(m - 1\).

3 The Proof

Let \(S\) be a sequence of elements from \(\mathbb{Z}_m \overset{\text{def}}{=} G\) with \(|S| = 4m - 5\) (with \(|S| = 4m - 3\)). If there exists \(\alpha \in G\) such that \(|\varphi^{-1}(\alpha)| \geq 2m - 2\) (such that \(|\varphi^{-1}(\alpha)| \geq 2m - 1\), then the proof is complete with both \(m\)-term subsequences monochromatic. Hence we may assume \(|\varphi(S)| \geq 3\), else the proof is complete by the pigeonhole principle.

Suppose there does not exist a subsequence \(S'\) of \(S\) with \(|S'| = 2m - 3\) (with \(|S'| = 2m - 2\), such that there exist an \((m - 2)\)-set partition \(P\) of \(S'\) (such that there exists an \((m - 1)\)-set partition of \(S'\)). Hence, since \(|\varphi(S)| \geq 3\), it follows from Proposition 2.1 that there is \(\alpha \in G\) with \(|\varphi^{-1}(\alpha)| \geq 3m - 3\) (with \(|\varphi^{-1}(\alpha)| \geq 3m - 1\), and the result follows from the arguments from the first paragraph. So we may assume such \(S'\) exists.

Since \(|S \setminus S'| = 2m - 2\) (since \(|S \setminus S'| = 2m - 1\)), it follows from Theorem 2.2 that there is an \(m\)-term zero-sum subsequence of \(S \setminus S'\), unless w.l.o.g. \(\varphi(S \setminus S') = \{0, 1\}\), with both 0 and 1 occurring with multiplicity \(m - 1\) in \(S \setminus S'\) (it follows from EGZ that there is an \(m\)-term zero-sum subsequence of \(S \setminus S'\) regardless). We can avoid this case by swapping a 0 or 1 from \(S \setminus S'\) with a term \(\beta\) from \(S'\) with \(\beta \neq 1\) and \(\beta \neq 0\), unless, up to order, \(S = (0, 0, \ldots, 0, 1, 1, \ldots, 1, \gamma)\), with \(\gamma \neq 0\) and \(\gamma \neq 1\); but it is easily checked, since \((\gamma, 1, \ldots, 1, 0, \ldots, 0)\) is zero-sum, that the sequence \((0, 0, \ldots, 0, 1, 1, \ldots, 1, \gamma)\) satisfies conjecture 1.1. So we may assume that there is a \(m\)-term zero-sum subsequence in \(S \setminus S'\), say \(T\).

Let \(S'' = S \setminus T\), and let \(P'\) be a \((2m - 4)\)-set partition of \(S''\) (let \(P\) be a \((2m - 2)\)-set partition of \(S'\)) obtained by adding the terms of \((S \setminus S') \setminus \emptyset\) to \(P\) as singleton sets. Fix two elements in \(T\), say \(\{t_1, t_2\} = T'\) (fix an element in \(T\), say \(\{t_1\} = T'\)). Applying Theorem 2.1 to \(P'\), it follows that either (i) holds and hence there exist \(m - 2\) elements from \(S''\) (there exist \(m - 1\) elements from \(S''\)) which along with \(T'\) form a \(m\)-term zero-sum sequence, and the proof is complete, or else (ii) holds and hence, w.l.o.g. by translation, there exists a proper nontrivial
subgroup $H \leq G$ with index a such that all but at most $a - 2$ terms of S'' are from H. Note that this proves the theorem for m prime.

We proceed by induction on the number of primes in the factorization of m. Hence, since $4 \frac{m}{a} - 5 \leq 3m - 3 - a$ (since $4 \frac{m}{a} - 3 \leq 3m - 1 - a$), it follows by induction hypothesis that there are two $\frac{m}{a}$-term zero-sum subsequences of S'', A and B, that share exactly two terms (that share exactly one term). Thus, since $(2a - 3) \frac{m}{a} + 2 \frac{m}{a} - 1 \leq 3m - 3 - a - (2 \frac{m}{a} - 2)$ (since $(2a - 3) \frac{m}{a} + 2 \frac{m}{a} - 1 \leq 3m - 1 - a - (2 \frac{m}{a} - 1)$), it follows by $2a - 2$ applications of the Erdős-Ginzburg-Ziv Theorem with the group H_a that there exist two m-term zero-sum subsequences A' and B', with A a subsequence of A', with B a subsequence of B', and with A' and B' sharing exactly two terms (sharing exactly one term), completing the proof.

Acknowledgement The first author would like to thank Professor Zoltan Furedi for a helpful discussion concerning this topic in February 1991.

References

