NOTE ON A CONJECTURE OF GRAHAM

DAVID J. GRYNKIEWICZ

ABSTRACT. An old conjecture of Graham stated that if n is a prime and S is a sequence of n
terms from the cyclic group C, such that all (nontrivial) zero-sum subsequences have the same
length, then S must contain at most two distinct terms. In 1976, Erdds and Szemeredi gave
a proof of the conjecture for sufficiently large primes n. However, the proof was complicated
enough that the details for small primes were never worked out. Both in the paper of Erdés
and Szemeredi and in a later survey by Erdés and Graham, the complexity of the proof was
lamented. Recently, a new proof, valid even for non-primes n, was given by Gao, Hamidoune and
Wang, using Savchev and Chen’s recently proved structure theorem for zero-sum free sequences
of long length in C),,. However, as this is a fairly involved result, they did not believe it to be the
simple proof sought by Erdds, Graham and Szemeredi. In this paper, we give a short proof of
the original conjecture that uses only the Cauchy-Davenport Theorem and pigeonhole principle,
thus perhaps qualifying as a simple proof. Replacing the use of the Cauchy-Davenport Theorem
with the Devos-Goddyn-Mohar Theorem, we obtain an alternate proof, albeit not as simple,
of the non-prime case. Additionally, our method yields an exhaustive list detailing the precise
structure of S and works for an arbitrary finite abelian group, though the only non-cyclic group

for which the hypotheses are non-void is Cz & Cap,.

1. INTRODUCTION

The following was an old conjecture of Graham [6].

Conjecture 1.1. Let C), be the cyclic group of order p prime and let S a sequence over C,, of
length p. If all (nontrivial) zero-sum subsequences of S are of the same length, then the number

of distinct terms in S is at most 2.

In 1976, Erdés and Szemeredi gave a proof of the conjecture for sufficiently large primes p
[6]. However, the proof was complicated enough that the details for small primes were never
worked out. Both in the paper of Erdos and Szemeredi and in a later survey by Erdds and
Graham [5], the complexity of the proof was lamented. Recently, a new proof, valid even for
non-primes, was given by Gao, Hamidoune and Wang [8], using Savchev and Chen’s recently
proved structure theorem for zero-sum free sequences of long length in the cyclic group C, [15].
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However, as Savchev and Chen’s result is fairly involved, they did not believe it to be the simple
proof sought by Erdés, Graham and Szemeredi.

In this paper, we give a short proof to the original conjecture of Graham that uses only the
Cauchy-Davenport Theorem and pigeonhole principle [14] [16]. Since the proof of the Cauchy-
Davenport Theorem (known since 1813 [2]) is elementary and requires only a paragraph, our
proof may perhaps qualify as simple. Replacing the use of the Cauchy-Davenport Theorem
with the Devos-Goddyn-Mohar Theorem [4] (alternatively, the partition theorem from [11] [12]
could be used instead of Devos-Goddyn-Mohar), we obtain an alternate proof, albeit not as
simple, of the non-prime case. With only a little added effort, our method naturally yields an
exhaustive list detailing the precise structure of S and shows that the result holds in an arbitrary
finite abelian group, though the only additional group for which the hypotheses are non-void
is Cy @ Cyy,. We state the main theorem in Section 3, after introducing modern notation for
sumsets, sequences and subsequence sums.

2. NOTATION AND PRELIMINARIES

We follow the notation of [7], [9], [10] and [13] concerning sumsets, sequences and subsequence
sums. For the convenience of the reader less familiar with this notation, we give self-contained
definitions for all relevant concepts in this section.

2.1. Sumsets. Let G be an abelian group, and let A, B C G be nonempty subsets. Then
A+B={a+blac A, be B}

denotes their sumset. For g € G, welet g+ A ={g+a | a € A} and let r4 g(g) denote the
number of representations of ¢ = a + b as a sum with a € A and b € B. The stabilizer of A is

H(A):={geG|g+ A=A}

The order of an element g € G is denoted ord(g), and we use ¢y : G — G/H to denote the
natural homomorphism modulo H. We use C,, to denote the cyclic group of order n.

2.2. Sequences. We let F(G) denote the free abelian monoid with basis G written multiplica-
tively. The elements of F(G) are then just multi-sets over G, but following long standing
tradition, we refer to the S € F(G) as sequences. We write sequences S € F(G) in the form

S=s1-8 = H g"7) | where v,(S)>0and s; € G.
geG
We call |S| :=1r = > v4(S5) the length of S, and v,4(S) € Ny the maultiplicity of g in S. The

geG
support of S is

supp(S) = {g € G | vg(S) > 0}.
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A sequence S is called a subsequence of S if S1]S in F(G) (equivalently, v4(S1) < v4(S) for all
g € G), and in such case, SS; 7! or S; 7S denotes the subsequence of S obtained by removing
all terms from S;. We let

h(S) := max{v,(S) | g € G}
denote the maximum multiplicity of a term of S. Given any map ¢ : G — G’, we extend ¢ to a
map of sequences, ¢ : F(G) — F(G'), by letting ¢(S) := ¢(s1) - - - ©(sr).

2.3. Subsequence Sums. If S =s;---s, € F(G), with s; € G, then the sum of S is

o(S) = Zsi = ng(S)g.
i=1

geG
We say S is zero-sum if 0(S) = 0. We adapt the convention that the sum of the trivial/empty
sequence is zero. We follow the usual notation for the set of subsequence sums:
En(S) = {o(T)| TIS and |T| = n}
n S|
S<n(S)=JBi(S) and  Ten(S)=[JBi(S) and X(S) =T (9.
i=1 i=n

2.4. Preliminary Results. For a finite abelian group G, we define the Davenport constant
D(G) to be the minimal integer such that any S € F(G) with |S| > D(G) has 0 € £(5). A basic
argument shows D(G) < |G| (see [9, Propositions 5.1.4]).

We need the following result (see [9, Theorem 5.2.10; Lemma 5.2.9] and also [14, Lemma
2.1]). Proposition 2.1(ii) is a simple consequence of the pigeonhole principle, and we will only
use Proposition 2.1(i) in the trivial case |B| = k = 2.

Proposition 2.1. Let G be an abelian group with A, B C G finite and nonempty:
(1) if |[A+ B| < |A| +|B| — k, then ra g(x) > k for all z € A+ B;
(11) if G is finite and |A| + |B| > |G| + k, then ra p(x) > k for all x € G.

Next, we state a special case of the Devos-Goddyn-Mohar Theorem [4].

Theorem 2.2. Let G be an abelian group, let S € F(G) be a sequence, and let n € Z* with
n <|S|. If H=H(X,(S)), then
(1) [22(8) = (D min{n, vy(éu(S))} —n +1)|H|.
geG/H
A particular case of the (general) Devos-Goddyn-Mohar Theorem is the much simpler Cauchy-
Davenport Theorem [2] [3] [14] [16].

Cauchy-Davenport Theorem. Let p be prime and let A; C Cp, fori=1,...,n, be nonempty.
Then

> Al = min{} A —n+1, p}.
=1 i=1
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3. WHEN THE LENGTH OF A ZERO-SUM IS UNIQUE

We begin with the following simple lemma.
Lemma 3.1. Let G be an abelian group, let g € G, and let R € F(G) be nontrivial with
(2) %(R) € {g,29,...,|Rlg}
If |R| < ord(g) — 1 and o(R) = |R|g, then R = g!Fl.
Proof. The result is clear when |R| < 2, so we may assume |R| > 3. In view of (2) and
|R| < ord(g) — 1, we have 0 ¢ 3(R). Suppose to the contrary that there is
(3) h € supp(R) € %(R) C {g,29, ..., |Rl|g}
with h # g. Note, since |R| < ord(g) — 1, that (3) shows h # 0 as well. From 0 ¢ 3(R) and (2)
(note if R'|Rh~! with o(R') = o(R), then o(RR'™') = 0), we have

S(RhY) € ({9,29,-.., IRIgh \ {o(R)}) N ({g,29.....|Rlg} — h).

Consequently, h ¢ {g,0}, 0 ¢ {g,29,...,|R|g} and o(R) = |R|g imply that |[S(Rh™!)| <
|R| -1

|Rh™Y = |R| — 1. As a result, (R~ U {0} = | > {0,¢:}| < |R| — 1, where Rh™! =
=1

1=

g1+ g|r—1 With g; € supp(R) € X(R) C G\{0}. Hence Proposition 2.1(i) (applied to the partial
Jj—1 |R|—1

sums »{0,¢;} + {0, g;}) implies every element of > {0, g;} has at least two representations,

i=1 i=1

contraaicting that 0 ¢ X(R). O
The next two lemmas will help with the detailed characterization of S.

Lemma 3.2. Let g, h € C,, and let S € F(C,,) with S = g'h"~" and 1 > n —1 > 1. Suppose g
1 a generator and

(4) 2(h"") ={g,29,..., (n — 1 = 1)g} U {bo},

for some by € Cy,. If there is a unique r € [1,n] such that 0 € X,.(S), then either S = g" h or
else n is odd, h = ”THg and S = g"2h2.

Proof. The cases n —1 < 2 and [ < 1 are easily verified, so we may assume 3 <n—1{[<n—2
and thus h # +g (else either there are two disjoint zero-sums of length 2 or S = ¢"~'h = g").
Now (4) implies

S(h") = {h,2h, ..., (n— D} = {g,2g,...,(n — 1 — 1)g} U {bo},

for some by € Cy,. Thus {h,2h,...,(n —[)h} contains an arithmetic progression of difference
g # +h and length n — [ — 1 > 2. Consequently, h must also be a generator. Hence, if n —1 > 4,
then it is easily seen, in view of the hypothesis n —1 < %, that {h,2h,...,(n — [)h} cannot
contain an arithmetic progression of length n — [ — 1 and difference g # +h. On the other hand,
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if n — [ = 3, then this could only be possible if ¢ = +2h, and this final case can be eliminated
by individual consideration, completing the proof. ]

Lemma 3.3. Let G be an abelian group of order n even, let g, h € G with ord(g) = § and
h# g, and let S € F(G) with S = ¢'h" ', n—1>2 and | > 5. If § € [1,n] is the unique integer

r such that 0 € ¥,.(S), then n — 1 is odd, h ¢ (g) and 2h = 2g.

Proof. Since h # g, 1 > § and ord(g) = § € [1,n] is the unique integer r such that 0 € X,.(9),
we conclude that h ¢ (g). However, noting that 2h € (g) (since (g) has index 2), we likewise see
that we must have 2k = 2g (in view of n — [ > 2), else the uniqueness of § = ord(g) is again
contradicted. Consequently, the sum of any §-terms of S using an even number of terms from
h"~! has sum zero. As a result, if n—1{ is even, then there are two disjoint zero-sum subsequences

of length 5, contradicting the uniqueness of 5, and completing the proof. O

Next, we state and prove the main result. In the remark that follows the proof of Theorem 3.4,
we explain how the proof can be simplified in the case G = C,, with p prime, including the use
of the Cauchy-Davenport Theorem in place of Devos-Goddyn-Mohar. Also, though we state the
theorem for an arbitrary finite abelian group, most non-cyclic cases have no sequences satisfying
the hypotheses (since 2D(G) < |G| holds for most non-cyclic groups [9, Theorem 5.5.5].) The
proof is divided into four main sections labeled steps.

Theorem 3.4. Let G be a finite abelian group of order n and let S € F(G) with |S| = n.
Suppose there is a unique r € [1,n] such that 0 € 3,.(S). Then |supp(S)| < 2.

If G is non-cyclic, then G = (h) © (g) = Co ®© Com, r = 5§ = 2m and

n+4
1
where g € G, h, g € G\ (g), ord(g9) = §, ord(h) =2 and = € [1,5 — 1] is odd.

If G is cyclic, then there exists a generator g € G = C,, such that either

S — gnflg/ or S — gn/2+x(h+g>n/271 or S — gn/2+x(h+ )n/fo

)

S _ gn—lgl or S — (29)77,—19//7
for some ¢’ € G or g" € G\ (2g); or n is odd, r = " and
n+1

S: n—2 2.
9" (9%
orn=2 mod4, r=3g and
n-+4 _
§ = (2> (T gy
where x € [0, 5 — 1] is even; orn is even, r = § and
2
5= gt g,

2
where x € [0, 5 — 1] with § — 2 odd.
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Proof. Recalling the well-known fact that a zero-sum free subsequence of length |G| — 1 must be
of the form ¢!%l=! for a generator g € G (this can be proved in a few lines using the trivial case
|B| = k = 2 in Proposition 2.1(i); see also [9, Lemma 5.4.2] for a slightly more involved proof),
we see that the cases r = 1 and r = n are trivial. Therefore we assume 1 < r < n, whence
0 ¢ supp(S). Observe that

(5) 0 ¢ Mg a(S) =2 a(07729),
) 0 ¢ S2ra(8) = Sa(0"718) = o(8) = Sy (077S),

where we have used for (6) the fact that 3,,(T') = o(T") — X7, (T') for T' € F(G), which follows
in view of the correspondence between R|T and TR™!|T.

Step 1. Let g € supp(S) be a term with v4(S) =1 := h(S). We first show that either
(7) h(S) > max{r,n—r+1}, or
(8) h(S) > max{r,n—r} and S= g”/2gm/2 with ord(g) = ord(g') = n even,

where ¢’ € G. We do so in two cases. First suppose
9) n—r—lzg—l,

in which case n —r+1 > r. Note that if there are distinct g, ¢’ € supp(S) each with multiplicity
at least n —r, then (9) implies n is even with S = g"2g"™"% and r = %. If ord(g) = ord(¢g’) = n,
then (8) holds, as desired. On the other hand, if (say) ord(g) < §, then ord(g) = r = §, in
which case the proof is easily concluded using Lemma 3.3. Therefore we may assume there is at
most one term with multiplicity at least n — r.

We apply Theorem 2.2 to ¥,,_,_1 (0" "71S). Let H = H(Z,,_,—1(0"""19)). Now assuming
h(S) < n—r, it follows, in view of (1) and (6), and since there is at most one term of multiplicity
n — r, that H is a proper, nontrivial subgroup. Moreover, in view of

vdm”4sy:n—r—1zg—1zmyﬂp4,

which follows from (9), we see that (1) implies that all but at most |G/H| — 2 terms of S are
from H. Letting T'|S be the subsequence of all terms not from H, we see that o(S) € o(T)+ H.
Thus, since |T'| < |G/H| -2 < 3 —1<n—7r—1 (by (9)), it follows, in view of the definition
of H, that o(S) € ¥,,_—1(0""1S), in contradiction to (6). Therefore we may instead assume
(9) fails, i.e,

(10) r—1>g—L

In this case, we apply the Theorem 2.2 to ¥,_1(0"2S). However, assuming h(S) < r —1 and
repeating the above arguments using (5) instead of (6) and using (10) instead of (9), we arrive

at the same contradiction. Therefore we conclude that h(S) > > % > n —r, as claimed. Thus
(7) is established in both cases.
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Factor S = ¢!T, where T € F(G), and let R|T be a maximal length subsequence (possibly
trivial) such that o(R) = |R|g. In view of (7), (8) and (5), it follows that

(11) vy(S) =1 = h(S) > max{r, n — r} > g > |7
and 0 ¢ X(T); in particular, 0 ¢ 3(R).

Step 2. Suppose ord(g) < n. Then it follows in view of (11) that r» = ord(g) and that g is the
only element from H := (g) in supp(S) (else we can find a zero-sum of length distinct from r).
Iteratively applying the definition of D(G/H) < |G/H| to ¢ (U~ 1Sg=°'49)) beginning with U
trivial, we find a zero-sum mod H subsequence U|Sg=°"49) with |U| > n — |H| — |G/H| + 1.
Adding on an appropriate number of terms from ¢4 (note %(g°"49) = H) yields a zero-
sum subsequence U’|S with |U'| > n — |H| — |G/H| + 2. If |H| < 4, then |U'| > [H| = r,
a contradiction. On the otherhand, if [H| = %, then we obtain the same contradiction unless
U|=2-1,0(U)=—gand SU 'g7"/? = gy ¢ H. Thus, if there is some g} € supp(T)\ H with
gh # go, then swapping go for gl in U yields a new U|Sg~°"49) with ¢(U) € H and |U| = 5—1
but o(U) # —g, whence we obtain the contradiction as before. Therefore, we instead see that
all terms outside H in supp(S) are equal to go. However, since all terms inside H in supp(S)
are equal to g, this shows |supp(S)| < 2. But now the proof is easily concluded using Lemma
3.3. So we henceforth assume ord(g) = n, in which case G = C,, is cyclic.

Since
IR| <|T|<r<l<n-2=ord(g) —2

(the last inequality holds else the proof is complete, while the other inequalities follow from
(11)), and since o(R) = |R|g, it follows that

(12) 0¢{9.29,...,79} < X(g"),

(13) 0¢{(r+1)g,(r+2)g,....(L+|R)g} < Z>r11(¢'R).

Hence [ + |R| < ord(g) —1=n—1 and
IRl <|T|=n—-1<r.
Step 3. Next, we show that, when R is nontrivial, there is some

(14) h € Ssr1(9'R)\{9,29,..., (1 +|R|)g}.

Thus assume for the moment that R is nontrivial. Then, in view of Lemma 3.1 and 0 ¢ 3(R),
there is some nontrivial Ry|R with o(Ro) ¢ {0,9,...,|R|g}. Note o(Rp) # |R|g = o(R) implies
|Ro| < |R| < |T| <r;thus 1 <|Ro| <r—2. If 6(Ry) € {—9,—2¢,...,—(r — |Ro| — 1)g}, then
0 € X<,_1(¢'Ro), contrary to hypothesis. Therefore

o(Ro) € {(|Rl+ g, (IR +2)g,...,(n — 7+ [Rol)g},
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whence | + |R| < ord(g) — 1 =n — 1 and ¢'|S with [ > r > r — |Rg| + 1 > 0 show that either
o(Rog) = (n—r+|Roy|)g = (|Ro| —7)g or else (14) holds, as desired. However, in the former case,
factor R = RoR; and note that o(R1) = 0(R) — o(Ro) = (|R1| +r)g. Now

R| < |T| < |Ry|+r<|T|=1+7r<n-1,

where the last inequality follows from |T'| = n—1[ with | > r, whence o(Ry) ¢ {0,g9,...,|R|g} (in
view of ord(g) = n) and so |R1| < |R| < |T'| <. Thus 1 < |R;| < r—2, and applying the above
arguments with R; instead of Ry, we establish (14) unless (|Ri| + r)g = o(R1) = (|R1| — 1)g.
However, the latter case implies 2rg = 0, whence r = § with n even.

Furthermore, by the above work for Ry and R;, we see that (14) is established unless

n

(15) o(R) €{9,29, -, |Rlg} U{(IR'| = 5)g}

for all nontrivial R'|R. Applying (15) to each = € supp(R), noting that g ¢ supp(R) (in view of
R|T), and recalling that |R| < |T'| <r = %, we conclude that

supp(R) € {29.39,... (5~ Dg} U {(5 + g}

If there are (§ + 1)g, x € supp(R) with z € {2g,3g,...,(5 — 1)g}, then applying (15) to the
sequence z((% + 1)g) yields a contradiction. Therefore we conclude that either

(16) supp(R) = {(5 +1)g} or  supp(R) < {2.39..... (5 — Lig}.

Noting that §g = rg = —rg and o(R1) = (|R1| +7)g, we see that
{(Bi| + 7+ Dg, (|Ra| +7+2)g,...,(n = 2)g} € o(R1) + Ty jry-2(9') € E<roa(g'Ra).
Thus, since |Ri|+ 7+ 1< |R|+ 1+ 1, and in view of (13) and ord(g) = n, we have
G\ {~g,(r —1)g} C B<r2(¢'R) U (¢'R).
As a result (recall |R| < |T),

(a7 supp(TR™) = {~(r —1)g} = {(5 + Vg,
(18) (r—=1g ¢ S< (g R)UT>,(¢'R),

else we find a zero-sum of length distinct from r using precisely one term from TR™! (recall
g ¢ supp(T') in view of the definition of T'), contrary to hypothesis.

By (16) and (17), we discover that supp(R) C {2g,3g, ..., (5 —1)g}, else supp(S) = {g, ”T‘*'Qg}
with r = 5, from which the remainder of the proof is easily deduced. Thus, since r = 3
and R is nontrivial, we see that r > 3 and (tg)g"'~t|¢'R for some ¢ € [2,7 — 1]. However
o((tg)g"~ 17t = (r —1)g with |(tg)g" ' 7| = r —t € [1,7 — 2], contradicting (18). So we see that
(14) is finally established.
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Step 4. Let A :={g,2g,...,(I+|R]|),h} if R is nontrivial, and otherwise let A := {g,2g,...,lg}.
Let TR™' = g -- “On—|R|-1, Where g; € G. Recall |[R| < [T, so TR~! is nontrivial. Let
Ti:=g1--gi,fori=0,1,....,n—|R| - 1. Now B := {0(Tp),0(T1),0(T2),...,0(T—|r|—1)} is a
set of cardinality n — [ — |R| + 1 by the following reasoning: if o(7;) = o(T}) with ¢ < j, then
o(T;T;~") = 0, which contradicts 0 ¢ %(T'). Note that A+ B = G in view of Proposition 2.1(ii);
moreover, if |R| > 0, then every element has at least two representations.

Suppose 0 € (A+ o (T;)) N (A +o(Tj)) for some i < j, i.e., 0 has at least two representations,
say 0 = z;g+0(T;) and 0 = z;9+ 0(Tj), as a sum in A+ B, where z;, z; € [1,n]. Consequently,
since (from (13))

{(r+1)g,(r+2)g,.... (1 +|R)} € Zzri1(9'R),

and since h € ¥>,41(¢'R) if R is nontrivial (from (14)), we see from the definition of A that
zi, xj € [1,7], else 0 € £>,41(5), contrary to hypothesis. Thus ¢g*T;|.S and g% T}|S are zero-sum
subsequences, and so our hypothesis of all zero-sums having length r implies o(7;) = (|T;| — )g
and o(T;) = (|T;| — r)g, whence o(T;T; ') = |T;T; |g. But now RT;T; ' contradicts the
maximality of R. Therefore we may instead assume 0 has a unique representation in A 4+ B, in
which case R is trivial, as remarked in the previous paragraph.

However, in this case A = {g,2g,...,lg} is an arithmetic progression with difference g such
that 0 € A+ B = G is a unique expression element. Hence it follows that

[BN{=lg,=(l=1)g,...,—g}| = 1.
Let bp € BN{-l,—(l—1)g,...,—g}, so that (in view of |B| = |G| — |A|+1=n—-1+1)

Observe, in view of (19) and Lemma 3.2, that it now suffices to show [supp(S)| < 2 to complete
the proof. Let T} be the subsequence such that o (7)) = bo.

Note that if we swap the index between g; and g;41, for i € [1,k — 1], and use this ordering
to define a new B, let us call it B’ as above, then by € B’ and only one element of B’ differs
from B, namely that corresponding to o(7;). However, applying the above argument using B’
instead of B, we see that we again contradict the maximality of R unless B = B’ (in view of
bp € B'). As B = B’ if and only if g; = g;1+1, we conclude that g = g2 = ... = gi. Likewise,
swapping the index between g; and g;4+1, for i € [k + 1,n — [ — 1], and proceeding as we did for
i € [1,k — 1] allows us to conclude gg11 = grk12 = ... = gn—i- Let g1 = ag and g,,_; = bg, with
a, b € [2,n — 1] (since 0, g ¢ supp(7T)). If |T| > 3, then we can find an ordering of the g; such
that g1 = gn—;. Then using this ordering to define B and repeating the above arguments, we
either contradict the maximality of R or show |supp(S)| = 2, in which case the proof is complete
as remarked before. So it only remains to consider the case |T'| = 2, as the proof is trivially
complete when |T'| = 1. But in this case, | = n—2 and a, b € [2,n—1] imply that ¢"~%(ag)|S and

g"°(bg)|S are both zero-sum subsequences of respective lengths n —a+1 and n — b+ 1, whence
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the uniqueness of r as a zero-sum length implies a = b. Thus supp(S) = {g, ag}, completing the
proof as remarked before. O

Remark. When G = C,, with n prime, the above proof can be simplified. First remark that
ord(g) = n holds trivially for |G| = p prime, so Step 2 is unnecessary. Next, noting that the
case n = 2 is trivial, we can assume n > 3, and thus that n is odd. This eliminates the lengthy
extra portion of Step 3 needed to establish (14) when r = § with n even. Also, the following
argument, using the Cauchy-Davenport Theorem instead of the Devos-Goddyn-Mohar Theorem,
can be used to establish (7).

To show (7), we proceed in the same two cases. First suppose
(20) n—r—lzg—l,

in which case n —r+1 > r. Note that if there are two distinct g, ¢’ € supp(S) with multiplicity
at least n — r, then this contradicts (20) in view of n odd, whence we may assume otherwise.
Thus, assuming h(S) < n — r, it is easily seen that we can find n — r — 1 nonempty sets
Ay, Ay_r_1 C G such that 17! [lyen, 9= 0" 15z~ € F(G), for some z € supp(9)
(see [1, Proposition 2.1]). Applying the Cauchy-Davenport Theorem to Ay,..., A,_,_1, we find
that ¥, _,_1(0"""1S271) = G, whence ,,_,_1(0"""15) = G, contradicting (6). Therefore we
may instead assume (20) fails, i.e,

n
21 > —.
In this case, assuming h(S) < r — 1, we can (as before) find r — 1 nonempty sets Aj,..., A1 C

G such that H’Z:ll [lyen, 9 = 0"=28 € F(G). Applying the Cauchy-Davenport Theorem to
Ay, ..., A1, we find that 3, 1(0""25) = G, contradicting (5). Therefore we conclude, in view
of (21), that h(S) > r > § >n —r, as claimed. Thus (7) is established in both cases.
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